2022 ICSA
APPLIED STATISTICS
SYMPOSIUM
Gainesville, Florida
June 19-22, 2022
Contents

- **Welcome** ... 1
- **Conference Information** .. 2
 - **Program Overview** .. 2
 - **Keynote Lectures** ... 3
 - **Short Courses** .. 9
- **Scientific Program** .. 14
 - **Welcome and Opening Remarks: Mon, June 20 8:00-8:30 (EDT)** 14
 - **Plenary Keynote Talk 1: Mon, June 20 8:30-9:30 (EDT)** 14
 - **Sessions 1A-1H: Mon, June 20 10:00-11:40 (EDT)** 14
 - **Sessions 2B-2H: Mon, June 20 13:00-14:40 (EDT)** 16
 - **Sessions 3A-3H: Mon, June 20 15:00-16:40 (EDT)** 17
 - **Sessions 4A-4H: Mon, June 20, 17:00-18:40 (EDT)** 19
 - **Plenary Keynote Talk 2: Tue, June 21, 8:30-9:30 (EDT)** 20
 - **Sessions 5A-5H: Tue, June 21, 10:00-11:40 (EDT)** 21
 - **Special Invited Talks: Tue, June 21, 13:00-14:30 (EDT)** 22
 - **Sessions 6A-6H: Tue, June 21, 15:00-16:40 (EDT)** 22
 - **Sessions 7A-7H: Tue, June 21, 17:00-18:40 (EDT)** 24
 - **Banquet Talk: Tue, June 21, 20:00-20:45 (EDT)** 26
 - **Plenary Keynote Talk 3: Wed, June 22, 8:30-9:30 (EDT)** 26
 - **Sessions 8A-8H: Wed, June 22, 10:00-11:40 (EDT)** 26
 - **Sessions 9A-9H: Wed, June 22, 13:00-14:40 (EDT)** 27
- **Posters** ... 30
- **Index of Authors** .. 32
On behalf of the organizing committee, we welcome you to the campus of the University of Florida. We are thankful to the ICSA executive committee for selecting Gainesville, FL, to be the venue for the 2022 Applied Statistics Symposium. We are super excited to have the unique distinction of hosting this conference face to face since the beginning of the pandemic. We plan to follow all safety protocols to create a safe environment for our participants.

The program committee has worked diligently to bring you an exciting program which consists of 3 plenary and 2 special invited lectures, plus 70 invited sessions on the theme of "Statistical Innovations in the Era of Artificial Intelligence and Data Science". In addition, there are 36 posters, 6 short courses and 5 oral presentations by student paper award recipients, and an after-dinner talk. In addition to the academic components of the conference, the local organizing committee has organized several social events including the opening mixture, entertainment programs, local outings, and a fabulous banquet.

We hope you will enjoy the next three and half days on campus. Besides attending numerous technical sessions, do take advantage of various local attractions Gainesville has to offer including a historic downtown, and various state and city parks with extensive nature trails. UF displays a very impressive campus listed on the National Register of Historic Places. You will be able to view beautiful brick construction buildings that showcase traditional Gothic architecture. A number of natural springs are within driving distance and so are three major metropolis and numerous beaches on both sides of the state. Feel free to contact the local organizers or the student volunteers if you need any assistance.

We thank all individuals and entities who contribute to the success of this event, notably, the deans of our two colleges, chair of department of biostatistics at UF, the staff members, the student volunteers, all committee members, our sponsors, notably the National Science Foundation for supporting the students and junior researchers attending the conference, chairs of neighboring statistics departments for encouraging their students to attend, and so on. Last but not least, we thank all the participants. Without your involvement, the event could not be a success. Go Gators!

Samuel Wu and Somnath Datta
Co-chairs, 2022 ICSA Applied Statistics Symposium Organizing Committee
ICSA 2022 Applied Statistics Symposium (Program and Activity Overview)

Theme: Statistical Innovations in the Era of Artificial Intelligence and Data Science

Date and Time

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Event</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sunday, June 19</td>
<td>7:30-18:30</td>
<td>Registration</td>
<td>HPNP Lobby</td>
</tr>
<tr>
<td></td>
<td>8:30-12:30</td>
<td>Short Courses SC01, SC02, SC03, SC04</td>
<td>See Program Book</td>
</tr>
<tr>
<td></td>
<td>12:30-13:30</td>
<td>Lunch</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13:30-17:30</td>
<td>Short Courses SC02, SC03, SC05, SC06</td>
<td>See Program Book</td>
</tr>
<tr>
<td></td>
<td>18:30-22:00</td>
<td>Welcome Reception and Mixer</td>
<td>Hilton Hotel</td>
</tr>
<tr>
<td>Monday, June 20</td>
<td>7:30-18:30</td>
<td>Registration</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8:00-8:30</td>
<td>Welcome and Opening Remarks</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8:30-9:30</td>
<td>Plenary Keynote Talk 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>9:30-10:00</td>
<td>Coffee Break</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10:00-11:40</td>
<td>Invited Sessions 1A to 1H</td>
<td></td>
</tr>
<tr>
<td></td>
<td>11:40-13:00</td>
<td>Lunch</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13:00-14:40</td>
<td>Invited Sessions 2B to 2H</td>
<td></td>
</tr>
<tr>
<td></td>
<td>14:34-15:00</td>
<td>Coffee Break</td>
<td></td>
</tr>
<tr>
<td></td>
<td>15:00-16:40</td>
<td>Invited Sessions 3A to 3H</td>
<td></td>
</tr>
<tr>
<td></td>
<td>16:40-17:00</td>
<td>Coffee Break</td>
<td></td>
</tr>
<tr>
<td></td>
<td>17:00-18:40</td>
<td>Invited Sessions 4A to 4H</td>
<td></td>
</tr>
<tr>
<td></td>
<td>19:00-20:00</td>
<td>Poster Session</td>
<td></td>
</tr>
<tr>
<td>Tuesday, June 21</td>
<td>7:30-18:30</td>
<td>Registration</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8:30-9:30</td>
<td>Plenary Keynote Talk 2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>9:30-10:00</td>
<td>Coffee Break</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10:00-11:40</td>
<td>Invited Sessions 5A to 5H</td>
<td></td>
</tr>
<tr>
<td></td>
<td>11:40-13:00</td>
<td>Lunch</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13:00-14:40</td>
<td>Special invited Session</td>
<td></td>
</tr>
<tr>
<td></td>
<td>14:40-15:00</td>
<td>Coffee Break</td>
<td></td>
</tr>
<tr>
<td></td>
<td>15:00-16:40</td>
<td>Invited Sessions 6A to 6H</td>
<td></td>
</tr>
<tr>
<td></td>
<td>16:40-17:00</td>
<td>Coffee Break</td>
<td></td>
</tr>
<tr>
<td></td>
<td>17:00-18:40</td>
<td>Invited Sessions 7A to 7H</td>
<td></td>
</tr>
<tr>
<td></td>
<td>19:00-22:00</td>
<td>Conference Banquet</td>
<td></td>
</tr>
<tr>
<td>Wednesday, June 22</td>
<td>8:30-9:30</td>
<td>Plenary Keynote Talk 3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>9:30-10:00</td>
<td>Coffee Break</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10:00-11:40</td>
<td>Invited Sessions 8A to 8H</td>
<td></td>
</tr>
<tr>
<td></td>
<td>11:40-13:00</td>
<td>Lunch</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13:00-14:40</td>
<td>Invited Sessions 9A to 9H</td>
<td></td>
</tr>
<tr>
<td></td>
<td>14:40</td>
<td>Adjournment</td>
<td></td>
</tr>
</tbody>
</table>
Keynote Speaker

David O. Siegmund, Ph.D., who holds the John D. and Sigrid Banks Chair at Stanford University, Stanford, CA, is a statistician who is comfortable in both the airy heights of theory and the practicalities of real-world applications. He works at the interface between probability and statistics, applying the tools he develops to topics as diverse as the design of medical clinical trials and mapping the locations of genes that are involved in specific physiological traits. His work has earned him several awards, including a Guggenheim Fellowship in 1974, the Humboldt Prize in 1980, and membership in the American Academy of Arts and Sciences in 1994. In 2002 he was elected to the National Academy of Sciences. His Inaugural Article, published in this issue of PNAS, reviews recent methodological developments in quantitative trait locus mapping and addresses the problem of mapping with selected, rather than random, samples.

Location and Time: HPNP Auditorium (1404), June 20 (Monday), 8:30 am – 9:30 am

Organizer: ICSA special lecture committee

Keynote Host: Samuel Wu, Ph.D., University of Florida

Title: Change detection, estimation, and segmentation

Abstract: I will first discuss the maximum score statistic to detect and estimate via confidence regions change-points in the level, slope, or other property of a Gaussian process and to segment the process when there appear to be multiple changes. Sequential detection is also considered. Examples involving temperature variations, levels of atmospheric greenhouse gases, temporal incidence of hate crimes, suicide rates, incidence of Covid-19, and excess deaths during the Covid-19 pandemic illustrate the general theory.

I will describe research in progress for spatio-temporal processes, where the spatial features can be either (A) unstructured vectors of observations or (B) random fields where changes of interest are geometrically clustered. Examples include low and (perhaps sparse) high dimensional cases.

I also mention the special problems posed by temporal and/or spatial dependence. Failure to account for correlations can lead to inflated false positive rates. while the change-points themselves can lead to upwardly biased estimates of correlations that result in loss of power.

Aspects of this research involve collaboration with Fang Xiao, Li Jian, Liu Yi, Nancy Zhang, Benjamin Yakir and Li (Charlie) Xia.
Keynote Speaker

Jianqing Fan, Ph.D., is a statistician, financial econometrician, and data scientist. He is Frederick L. Moore’18 Professor of Finance, Professor of Statistics, and Professor of Operations Research and Financial Engineering at the Princeton University where he chaired the department from 2012 to 2015. He is the winner of The 2000 COPSS Presidents’ Award, Morningside Gold Medal for Applied Mathematics (2007), Guggenheim Fellow (2009), Pao-Lu Hsu Prize (2013) and Guy Medal in Silver (2014).

Location and Time: HPNP Auditorium (1404), June 21 (Tuesday), 8:30 am – 9:30 am

Organizer: ICSA special lecture committee

Keynote Host: Somnath Datta, Ph.D., University of Florida

Title: Measuring housing activeness from multi-source big data and machine learning

Abstract: Measuring timely high-resolution socioeconomic outcomes is critical for policy-making and evaluation, but hard to reliably obtain. With the help of machine learning and cheaply available data such as social media and nighttime, it is now possible to predict such indices in fine granularity. This paper demonstrates an adaptive way to measure the time trend and spatial distribution of housing activeness with the help of multiple easily-accessible datasets. We first identified the regional activeness status at the individual level from energy consumption data and then matched it with nighttime and land use data geographically. Then, we introduce the principle of robustification via truncation and factor-adjusted regularization methods for prediction (FarmPredict) to deal with two important stylized features in big data. The heterogeneity of big data is mitigated through the use of the government land planning data. Farm-Predict effectively lifts the prediction space and solves the colinearity problem in high-dimensional data. It is applicable to all machine learning algorithms. FarmPredict allows us to extend the regional results to the city level, with a 75% out-of-sample explanation of the spatial and timeliness variation in the housing usage. FarmPredict is not only a model but an analytical framework of machine learning on high-dimensional data, showing broad potential applications to other social science problems. Since energy is indispensable for life, our method is highly transferable with the requirement of only public and accessible data. Our paper demonstrates the power of machine learning in understanding socioeconomic outcomes when the census and survey data is costly or unavailable.

(Joint work with Yang Zhou, Lirong Xue, Zhengyu Shi, Libo Wu)
Xihong Lin, Ph.D., is Professor and former Chair of the Department of Biostatistics, Coordinating Director of the Program in Quantitative Genomics at the Harvard T. H. Chan School of Public Health, and Professor of the Department of Statistics at the Faculty of Arts and Sciences of Harvard University, and Associate Member of the Broad Institute of Harvard and MIT.

Dr. Lin is an elected member of the National Academy of Medicine. She received the 2002 Mortimer Spiegelman Award from the American Public Health Association, and the 2006 Committee of Presidents of Statistical Societies (COPSS) Presidents’ Award and the 2017 COPSS FN David Award. She is an elected fellow of American Statistical Association (ASA), Institute of Mathematical Statistics, and International Statistical Institute.

Dr. Lin’s research interests lie in development and application of statistical and computational methods for analysis of massive data from genome, exposome and phenome, and scalable statistical inference and learning for big genomic, epidemiological and health data.

Location and Time: HPNP Auditorium (1404), June 21 (Tuesday), 13:00 pm – 13:45 pm

Organizer: Somnath Datta, Ph.D., University of Florida

Keynote Host: Ji-Hyun Lee, DrPH, University of Florida

Title: Lessons learned from the COVID-19 pandemic: a statistician’s reflection

Abstract: In this article, I will discuss my experience as a statistician involved in COVID-19 research in multiple capacities in the last two years, especially in the early phase of the pandemic. I will reflect on the challenges and the lessons I have learned in pandemic research regarding data collection and access, epidemic modeling and data analysis, open science and real time dissemination of research findings, implementation science, media and public communication, and partnerships between academia, government, industry and civil society. I will also make several recommendations on preparing for the next stage of the pandemic and for future pandemics.
Dr. Chatterjee’s research focuses on a diverse set of quantitative issues that arise in design, analysis, interpretation and public health translation of modern molecular and genetic epidemiologic studies.

Location and Time: HPNP Auditorium (1404), June 21 (Tuesday), 13:45 pm – 14:30 pm

Organizer: Somnath Datta, Ph.D., University of Florida

Keynote Host: Ji-Hyun Lee, DrPH, University of Florida

Title: Predictive model building through integration of information across disparate data sources and summary-statistics

Abstract: Model building based on classical statistical methods, as well as modern machine learning techniques, typically requires availability of a single adequately large dataset, or multiple harmonized datasets across a group of similar studies. In the future, however, development of complex models incorporating a variety of factors from different domains will require integration of information from disparate data sources, which, individually may have information only on subsets of the explanatory variables of interest. Moreover, information from some studies may only be available through pre-computed summary-statistics, generated under certain forms of “reduced” models. In this talk, I will describe some of our recent efforts towards developing statistical methods for model building through data integration under a semiparametric generalized meta-analysis framework. I will illustrate the unique opportunity data integration methods provide through an application involving the development of a COVID-19 mortality risk calculator through integration of information across diverse datasets.
Lee-Jen Wei, Ph.D., was graduated from Fu Jen Catholic University's Mathematics Department in 1970. He obtained his PhD from the University of Wisconsin–Madison in 1975. He has been a tenured Professor of Biostatistics at Harvard University since 1991 and was the co-director of the Bioinformatics Core at the Harvard School of Public Health from 2003 to 2007. From 2003 to 2004, he served as the acting chair of the Department of Biostatistics at Harvard University. Under his supervision, the department successfully converted the doctor of science degree program in biostatistics (a professional degree) to a conventional (art and sciences) Ph.D. program at the Harvard Graduate School. This was an important accomplishment since the department had tried this conversion for more than 20 years without success.

Professor Wei has developed and published a number of novel quantitative methods for analyzing data from experimental and observational studies. Specifically, he has published many papers on monitoring drug and device safety and related topics. The resulting procedures have been utilized for various drug and device regulatory evaluations involving safety issues. His extensive experience in quantitative science for making inferences about the drug and device safety is readily applicable to the general industry product safety issues.

Location and Time: Ben Hill Griffin Stadium Champions Club (121 Gale Lemerand Drive), June 21 (Tuesday), 20:00 pm – 20:45 pm

Organizer: ICSA special lecture committee

Keynote Lecture Host: Samuel Wu, Ph.D., University of Florida

Title: Lost in translation

Abstract: One of the main goals of conducting a clinical, comparative study is to obtain robust, clinically interpretable treatment effect estimates with respect to harm-benefit perspectives at the patient’s level via efficient and reliable quantitative procedures. To accomplish this goal, it is important to know how to effectively translate new developments in basic data science research into clinical research and practice. Unfortunately, some commonly used statistical procedures are not translational. That is, results of the analysis may be misinterpreted or difficult to comprehend. A notorious example is use of the p-value for clinical decision making, which is not an appropriate quantifier for assessing the clinical utility of a new therapy or strategy. In this talk, we will discuss several translational problems and present possible remedies.
Keynote Lecture 3

Keynote Speaker

Susan Murphy, Ph.D., is the Mallinckrodt Professor of Statistics and of Computer Science, Radcliffe Alumnae Professor at the Radcliffe Institute, Harvard University. Her research focuses on improving sequential, individualized, decision making in health, in particular on clinical trial design and data analysis to inform the development of mobile health treatment policies. Susan is a Fellow of the Institute of Mathematical Statistics, a Fellow of the College on Problems in Drug Dependence, a former editor of the Annals of Statistics, a member of the US National Academy of Medicine and a 2013 MacArthur Fellow.

Location and Time: HPNP Auditorium (1404), June 22 (Wednesday), 8:30 am – 9:30 am

Organizer: ICSA special lecture committee

Keynote Lecture Host: Guogen Shan, Ph.D., University of Florida

Title: Inference for longitudinal data after adaptive sampling

Abstract: Adaptive sampling methods, such as reinforcement learning (RL) and bandit algorithms, are increasingly used for the real-time personalization of interventions in digital applications like mobile health and education. As a result, there is a need to be able to use the resulting adaptively collected user data to address a variety of inferential questions, including questions about time-varying causal effects. However, current methods for statistical inference on such data (a) make strong assumptions regarding the environment dynamics, e.g., assume the longitudinal data follows a Markovian process, or (b) require data to be collected with one adaptive sampling algorithm per user, which excludes algorithms that learn to select actions using data collected from multiple users. These are major obstacles preventing the use of adaptive sampling algorithms more widely in practice. In this work, we proved statistical inference for the common Z-estimator based on adaptively sampled data. The inference is valid even when observations are non-stationary and highly dependent over time, and (b) allow the online adaptive sampling algorithm to learn using the data of all users. Furthermore, our inference method is robust to miss-specification of the reward models used by the adaptive sampling algorithm. This work is motivated by our work in designing the Oralytics oral health clinical trial in which an RL adaptive sampling algorithm will be used to select treatments, yet valid statistical inference is essential for conducting primary data analyses after the trial is over.
SC01: Causal Inference with R

Location and Time: HPNP G114, Sun, June 19, 8:30 - 12:30
Length: Half-day
Instructors: Prof. Babette Brumback (University of Florida)

Abstract: One of the primary motivations for clinical trials and observational studies of humans is to infer cause and effect. Disentangling causation from confounding is of utmost importance. Causal Inference with R explains and relates different methods of confounding adjustment in terms of potential outcomes and graphical models, including standardization, doubly robust estimation, difference-in-differences estimation, and instrumental variables estimation. Several real data examples, simulation studies, and analyses using R motivate the methods throughout. The course assumes familiarity with basic statistics and probability, regression, and R. The course will be taught with a blend of lecture and worked examples.

Teaching Plan:
First part:
Introduction – 15 minutes
Potential Outcomes and Effect Measures – 30 minutes
Causal Directed Acyclic Graphs – 1 hr
15 minute break

Second part:
Standardization and Doubly Robust Estimation – 1 hr
Difference-in-Differences Estimation – 30 minutes
Instrumental Variables Estimation – 30 minutes

About the Instructors: Babette A. Brumback, Ph.D. is Professor in the Department of Biostatistics at the University of Florida; she won the department’s Outstanding Teacher Award for 2020-2021. A Fellow of the American Statistical Association, she has researched and applied methods for causal inference since 1998, specializing in methods for time-dependent confounding, complex survey samples and clustered data.

SC02: Leveraging Real-World Data in Clinical Trial Design and Analysis

Location and Time: HPNP G103, Sun, June 19, 8:30 - 17:30
Length: Full-day
Instructor: Dr. Chenguang Wang (Regeneron Pharmaceuticals, Inc.)

Abstract: The amount of real-world data (RWD) collected from sources other than protocol-driven clinical studies is increasing ultra-rapidly. The clinical evidence that can be derived from analysis of these RWD is considered as real-world evidence (RWE) that can complement the knowledge derived from traditional well-controlled clinical trials. Leveraging RWE can potentially save time and cost of the investigational study and improve the efficiency of regulatory decision-making. Incorporating RWD in regulatory decision-making demands much more than “mixing” RWD with investigational clinical trial data. The RWD has to undergo appropriate analysis for deriving the right RWE. Moreover, such analysis has to be integrated with the design and analysis of the investigational study for regulatory decision-making. The standard clinical trial toolbox does not offer ready solutions for incorporating RWD. In this course, the instructor(s) will cover a series of methods they have developed for leveraging real-world data in clinical trial design and analysis. Their work has been recognized by the FDA and received The FDA CDRH Excellence in Scientific Research Award and The FDA Scientific Achievement Award.

Teaching Plan: In Part I of the course, we introduce a new method for proposing performance goals—numerical target values pertaining to effectiveness or safety endpoints in single-arm medical device clinical studies—by leveraging RWE. The method applies entropy balancing to address possible patient dissimilarities between the study’s target patient population and existing real-world patients, and can take into account operation differences between clinical studies and real-world clinical practice.

In Part II of the course, we introduce a method that extends the Bayesian power prior approach for a single-arm study to leverage external RWD. The method uses propensity score methodology to pre-select a subset of RWD patients that are similar to those in the current study in terms of covariates, and to stratify the selected patients together with those in the current study into more homogeneous strata. The power prior approach is then applied in each stratum to obtain stratum-specific posterior distributions, which are combined to complete the Bayesian inference for the parameters of interest.

In Part III of the course, we introduce several extensions of the PS-integrated method in Part II. These extensions include 1) a frequentist PS-integrated composite likelihood approach for incorporating RWE in single-arm clinical studies; 2) leveraging multiple RWD sources in single-arm medical device clinical studies; 3) leveraging RWD for the evaluation of diagnostic tests for low prevalence diseases; 4) augmenting both arms of a randomized controlled trial by leveraging RWD; and 5) PS-integrated approach for survival analysis.

In Part IV of the course, we describe an R package, psrwe, that implements a PS-integrated power prior (PSPP) method, a PS-integrated composite likelihood (PSCL) method, and a PS-integrated weighted Kaplan-Meier estimation (PSKM) method for the methods in Parts II and III. Illustrative examples are provided to demonstrate each of the approaches.

In Part V of the course, we introduce a propensity score-based Bayesian non-parametric Dirichlet process mixture model that summarizes subject-level information from randomized and RWD to draw inference on the causal treatment
effect in exploratory analysis.

About the Instructor: Dr. Chenguang Wang is a Senior Director and the Head of Statistical Innovation at Regeneron. Previously, Dr. Wang was an Associate Professor with Johns Hopkins University and an FDA Mathematical Statistician. Dr. Wang has extensive experience in clinical trial design and analysis in the regulatory setting. Dr. Wang holds B.S. and M.S. degrees in Computer Science and has abundant experience developing statistical software.

SC03: Marginal Models in Analysis of Correlated Binary Data with Time-Dependent Covariates

Location and Time: HPNP G301, Sun, June 19, 8:30 - 17:30

Length: Full-day

Instructors: Prof. Jeffrey Wilson (Arizona State University); Prof. Din Chen (Arizona State University)

Abstract: This workshop is based on the book: "Marginal Models in Analysis of Correlated Binary Data with Time Dependent Covariates" co-authored by Drs. Jeffrey R. Wilson, Elsa Vazquez-Arreola, and (Din) Ding-Geng Chen, published by Springer in 2020, which is the first book to systematically introduce marginal models to analyze correlated binary data with time-dependent covariates in clinical trials and observational studies using R and SAS. This workshop provides a thorough presentation of correlated binary data with time-dependent covariate. It gives a detailed step-by-step illustration of their implementation using R and SAS. Longitudinal data or contain correlated data due to the repeated measurements on the same subject. The changing values usually consist of time-dependent covariates and their association with the outcomes present different sources of correlation. Most methods used to analyze longitudinal data would average the effects of time-dependent covariates on outcomes over time and provide a single regression coefficient per time-dependent covariate. Such an approach prevents analysts and researchers the opportunity to following the changing impact of time-dependent covariates on the outcomes. The workshop addresses such issues through the use of partitioned regression coefficients. We further use examples of correlated data with time-dependent covariate on obesity from the Add Health study and cognitive impairment diagnosis in the National Alzheimer’s Coordination Center.

Teaching Plan: Morning Session (8:30am to 12:30pm):
1. Fundamentals of estimation of regression coefficients in cross-sectional data
 a. Review of the estimation of regression models
 b. Generalized estimating equation (GEE) and generalized linear mixed models
 c. Generalized Method of Moments estimates;
2. Presentation on data with time-dependent covariates and discussion on the partitioned matrix.

Afternoon Session (1:30pm to 4:30pm):
4. Bayesian analysis in this partitioned data matrix using MCMC is applied.

About the Instructors:
Dr. Jeffrey Wilson is a Professor of Statistics and Biostatistics at Arizona State University. Dr. Wilson’s research experience includes grants as PI and co-PI from the NIH, NSF, USDA, Arizona Department of Health Services, and the Arizona Disease Research Commission. He is presently the Statistics Associate Editor for The Journal of Minimally Invasive Gynecology and a former Chair of the Editorial Board of the American Journal of Public Health. He has published more than 85 articles in leading journals such as Statistics in Medicine, American Journal of Public Health, Journal of Royal Statistics Society, Computational Statistics, and Australian Journal of Statistics, among others. He has consulted with pharmaceutical companies and hospitals while representing them before the FDA and other federal government healthcare agencies. He has taught specialized Biostatistics classes at Mayo Clinic. He has led similar courses for Phoenix Children’s Hospital, Barrow Neurological Center, St. Joseph’s Hospital, and Banner Hospital. He is the former Director of the School of Health Management and Policy. He is a former Director and co-Director of the Biostatistics Core in the NIH Center for Alzheimer at Arizona State University.

Dr. (Din) Ding-Geng Chen is now the executive director and professor in biostatistics at College of Health Solutions, Arizona State University. He was the Wallace H. Kuralt distinguished professor in Biostatistics at University of North Carolina-Chapel Hill, a professor in biostatistics at the University of Rochester Medical Center, the Karl E. Peace endowed eminent scholar chair and professor in biostatistics from the Jiann-Ping Hsu College of Public Health at the Georgia Southern University. Dr. Chen is an elected fellow of the American Statistical Association (ASA), an elected member of the International Statistics Institute (ISI), and a senior expert consultant for biopharmaceuticals and government agencies with extensive expertise in clinical trial biostatistics. Dr. Chen has more than 200 referred professional publications and co-authored/co-edited 33 books on biostatistics clinical trials, biopharmaceutical statistics, interval-censored survival data analysis, meta-analysis, public health statistics, statistical causal inferences; statistical methods in big-data sciences and Monte-Carlo simulation-based statistical modeling. Dr. Chen has been invited nationally and internationally to give short courses at various scientific conferences.
SC04: Statistical methods for analyzing transmission and control of infectious diseases

Location and Time: HPNP G312, Sun, June 19, 8:30 - 12:30

Length: Half-day

Instructors: Dr. Ira Longini (University of Florida); Dr. Yang Yang (University of Florida); Dr. Matt Hitchings (University of Florida)

Abstract: Application of statistical inference methods to infectious disease data is a key tool in understanding transmissibility of pathogens and the effectiveness of interventions. In this half-day course, we will learn about different sources of data that arise from passive surveillance, active case finding and clinical studies, and methods for inferring key parameters from such data. The types of data sources to be covered include epidemic curve data, household-based observational data, and data arising from serosurveillance studies. We will also cover common computational algorithms for statistical inference and a few software packages that implement these algorithms. In addition, we will briefly introduce several advances in modeling frameworks to address challenges arising from the pandemic of COVID-19. Upon completion of this course, participants will recognize the various types of infectious disease data, common models designed to analyze these data, key parameters of epidemiological importance including intervention efficacies, and promising research directions in the field of infectious disease modeling.

Teaching Plan: The course will be divided into three sessions each of 70min, with two 15-min breaks.

First session: History of infectious disease modeling; types of infectious disease data (case numbers, serology, household data including time of symptom onset) and the underlying hierarchy of information; Overview of transmission parameters of epidemiological importance such as the basic reproductive number, final attack rate, and secondary attack rate; Different measures of vaccine efficacies and effectiveness of vaccination programs.

Second session: Detail on classic models that are fitted to epidemic curve data, final size models with fixed and random infectious periods for close contact groups (e.g., households), discrete-time chain binomial models and continuous-time survival models for sequential data of symptom onsets or laboratory confirmations among close contact groups, statistical inference from serosurveillance data, and agent-based models.

Third session: Computational methods (EM and Monte Carlo EM algorithms, traditional MCMC, Approximate Bayesian Computing, Particle Filtering, and Hamiltonian Monte Carlo). We will introduce a few R packages (e.g., surveillance, transtat, serosolver) and show some data examples; recent advances in statistical transmission models to address challenges the a rose during the pandemic of COVID-19 (e.g., presymptomatic and asymptomatic infectiousness, under-testing, delayed reporting, etc.).

About the Instructors: Dr. Ira Longini is a professor of biostatistics in the College of Public Health and Health professions as well as Emerging Pathogens Institute at the University of Florida. He works on the mathematical modeling, stochastic processes and biostatistics applied to epidemiological infectious disease problems. He has specialized in the mathematical and statistical theory of epidemics—a process that involves constructing and analyzing mathematical models of disease transmission, disease progression and the analysis of infectious disease data based on these models. In addition, he works extensively in the design and analysis of vaccine and infectious disease prevention trials and observational studies.

Dr. Yang Yang is an associate professor of biostatistics in the College of Public Health and Health professions as well as Emerging Pathogens Institute at the University of Florida. His research focuses on statistical methods for disease transmission dynamics, efficacy evaluation, missing data and surveillance bias. He also works on ecological modeling and genetic association for clinical outcomes.

Dr. Matt Hitchings is an Assistant Professor in the Department of Biostatistics at the University of Florida. His primary focus is evaluating the effectiveness of interventions against infectious disease, through clinical trials, observational studies, and development and application of mathematical models. Recently he has been conducting observational studies of vaccine effectiveness using passive surveillance data in Brazil, and developing a framework for analysis of serological data for pathogens including SARS-CoV-2 and dengue virus.

SC05: Spatial analysis with Gaussian Markov random fields

Location and Time: HPNP G114, Sun, June 19, 13:30 - 17:30

Length: Half-day

Instructors: Dr. Debashis Mondal (Washington University)

Abstract: Gaussian Markov random fields have been applied with much success to account for discrete spatial variation in both lattice and areal unit data. Applications include astronomy, agriculture, computer vision, climate studies, epidemiology, image analysis, geology and other areas of environmental science. Lattice-based Gaussian Markov random fields are extremely adaptable to swift and uncomplicated statistical computations and provide ways to develop complex and hierarchical models through local specifications, and, for these reasons, have contributed to considerable success in the analysis of spatial data. This short course gives an introduction to spatial models based on Gaussian Markov random fields. The course covers statistical computation for spatial linear mixed models, particularly, residual maximum likelihood (REML) estimation and kriging or...
prediction. The course also presents statistical computation for general spatial mixed models using Markov Chain Monte Carlo (MCMC) sampling methods. Practicum sessions will introduce various R codes with applications from environmental sciences and geographical epidemiology.

The course will end with a summary of the topics and ideas covered and a list of further resources.

Teaching Plan: Lecture 1: Introduction to spatial statistics, Gaussian Markov random fields, conditionals and intrinsic autoregressions.

Lecture 2: Spatial mixed models, REML, kriging, h-likelihood and MCMC computations.

Break

Lecture 3 and 4: Statistical calculations using R-codes. Applications from environmental sciences and geographical epidemiology.

Summary and further resources.

About the Instructors: Debashis Mondal, PhD, is an associate professor in the Department of Mathematics and Statistics at Washington University in St Louis. Mondal’s research interests include spatial statistics; computational science and machine learning; and applications in environmental sciences, ecology, including microbial ecology, and geographical epidemiology. Mondal won an NSF CAREER Award in 2013 and the International Indian Statistical Association’s Young Researcher Award in 2015. He is also an elected member of the International Statistical Institute. Mondal earned his doctorate in statistics at the University of Washington, Seattle.

SC06: Bayesian Computational Tools for Clinical Data

Location and Time: HPNP G312, Sun, June 19, 13:30 - 17:30

Length: Half-day

Instructor: Prof. Sujit Ghosh (North Carolina State University); Dr. Amy Shi (AstraZeneca Pharmaceutical)

Abstract: The Bayesian paradigm provides a structured and practical way of expressing complicated models through a sequence of simple conditional distributions making them useful for simple to complex data structures required to address multiple phases of clinical trials, particularly for those that involves different types of data irregularities (missing values, censored data, etc.). Over the recent years there have been tremendous efforts on developing Bayesian analytics for leveraging data from sources outside of prospectively designed study, referred to as external data such as various Real-World-Data (RWD) sources, historical clinical data, and data from multiple trials within a grand hierarchical structure. Thus, development of appropriate statistical models and related inference are warranted that are not only based on solid theoretical guarantees but also making sure that such complex models are estimable and interpretable in practical settings for modern clinical trials. Thus, one of the main goals of the proposed short course is to present the modern analytical tools that are easily accessible to practitioners by providing a glimpse of theoretical backgrounds supplemented by many practical examples derived from real case studies. This will be accomplished by illustrating numerous real-data examples (using software demos) ranging from two-arm trials to more complex hierarchical models that involves handling data irregularities commonly faced by practitioners.

Teaching Plan: The first part of the short course will begin with a brief overview of Bayesian machine learning (BML) methods for randomized controlled trials (RCTs) using various study designs including sample size determination methods. In particular, it will showcase the use of Bayesian posterior predictive methods for properly handling missing and censored data, a feature that are not readily employed by my routine ML methods. The second part of the course will involve more realistic and complex models that have recently emerged in the modern era used by pharmaceutical industries and regulatory agencies, and then showcase the use of modern BML methods through various real case studies. Throughout the tutorial practical applications and worked-out examples will be emphasized without getting into the theoretical underpinnings of the methods, but relevant literature will be provided for those wishing to learn more in-depth notions of BML tools. The concepts and methods discussed will be demonstrated using the popular software packages (R and SAS) developed by the presenters, but those are implementable by any other software capable of coding Markov Chain Monte Carlo (MCMC) methods.

The two-parts of the course will consist of the following topics:

Part I - Introduction to Bayesian Methods for Clinical Trials

1. Basics of Bayesian Methods for RCTs (20min)
2. Predictive Distributions and Sample Size Determination (20min)
3. Computational Methods using Monte Carlo Methods (35min)
4. Primer on Bayesian Software (via R, Stan and SAS) (30min)

(15min break)

Part II – BML methods with real-data examples

1. Bayesian regression models using ‘brms’ R package (35min)
2. GLMs and Multi-level models PROC BGLIMM (40min)
3. Penalized regression models with data irregularities (30min)
4. Q&As and additional demos on demand (15min)

About the Instructor: Professor Sujit Kumar Ghosh has
over 25 years of experience in conducting, applying, evaluating and documenting statistical analysis of biomedical and environmental data. Prof. Ghosh is actively involved in teaching, supervising and mentoring graduate students at the doctoral and master levels. He has supervised over 40 doctoral graduate students and published over 125 peer-reviewed journal articles in various areas of statistics with applications in biomedical and environmental sciences, econometrics and engineering. He has recently co-authored a book (with Dr. Reich) titled "Bayesian Statistical Methods," which is being used as a textbook at several universities. Prof. Ghosh has delivered over 180 invited lectures, seminars at national and international meetings. He has also delivered several short courses and served as short-term visiting professor at several institutions in various countries. Prof. Ghosh received the International Indian Statistical Association (IISA) Young Investigator Award in 2008; was elected a Fellow of the American Statistical Association (ASA) in 2009; was elected as the President of the NC Chapter of ASA in 2013 and also elected as the President of the IISA in 2017.

Dr. Amy Shi is currently a Statistical Science Associate Director at AstraZeneca Pharmaceutical in the Late CVRM (Cardiovascular Renal Metabolism) group. Much of her work involves with taking part in clinical trials as a statistician and researching for innovative statistical methods. Before joining AstraZeneca, she was a Principal Research Statistician Developer in the Bayesian Modeling Group at SAS from 2010 to 2021. Her job responsibility was to enhance the Bayesian capabilities of SAS software, with a focus on generalized linear mixed models, multilevel hierarchical settings, variable selection, choice modeling, and machine learning. She developed a couple of SAS Bayesian procedures (PROC BCHOICE and PROC BGLIMM) and many functional packages. Dr. Shi has a MS in Statistics from the Michigan State University and a Ph.D. in Biostatistics from the University of North Carolina at Chapel Hill.
Welcome and Opening Remarks: Mon, June 20 8:00-8:30 (EDT)

Session W: Welcome and Opening Remarks
Location: HPNP Auditorium (1404)
Organizer: Symposium Organizing Committee.
Chair: Peihua Qiu, Ph.D., University of Florida.
8:00-8:05 Welcome - Dr. Peihua Qiu, Chair of Department of Biostatistics
8:05-8:10 Welcome - Dr. Michael Perri, Dean of College of Public Health and Health Professions
8:10-8:20 Welcome - Dr. Zhezhen Jin, President of International Chinese Statistical Association
8:20-8:25 Welcome - Somnath Datta, Co-chair of organizing committee
8:25-8:30 Opening Remarks - Ji-Hyun Lee, Chair of local committee

Plenary Keynote Talk 1: Mon, June 20 8:30-9:30 (EDT)

Session P1: Plenary Keynote Talk 1
Location: HPNP Auditorium (1404)
Organizer: ICSA Special Lecture Committee.
Chair: Samuel Wu, Ph.D., University of Florida.
8:30-9:30 Change detection, estimation, and segmentation
David O. Siegmund. Stanford University

Sessions 1A-1H: Mon, June 20 10:00-11:40 (EDT)

Session 1A: Causal Inference And Its Applications
Location: HPNP G312
Organizer: Xinping Cui, University of California, Riverside, Esra Kurum, University of California, Riverside.
Chair: Xinping Cui, University of California, Riverside.
10:00-10:25 A causal approach to functional mediation analysis with application to a smoking cessation intervention
Donna Coffman. Temple University
10:25-10:50 Estimating the Average Treatment Effect in Randomized Clinical Trials with All-or-None Compliance
Zhizhe Zhang. NIH/NCI
10:50-11:15 Survey Weighting Strategies In Causal Mediation Analysis
Haoyu Zhou. Temple University
11:15-11:40 Discussion: Causal Inference and its Applications
Esra Kurum. University of California, Riverside

Session 1B: Latent Variable Models In The Data Science Era
Location: HPNP G112
Organizer: Yuqi Gu, Columbia University, Gongjun Xu, University of Michigan.
Chair: Yuqi Gu, Columbia University.
10:00-10:25 Identifiable Deep Generative Models via Sparse Decoding
Gemma Moran1, Dhanya Sridhar2, Xinyang Wang3 and David Blei1.
1 Columbia University 2 Mila and Universite de Montreal 3 University of Michigan
10:25-10:50 Population-Level Balance in Signed Networks
Weijing Tang and Ji Zhu. University of Michigan
10:50-11:15 Likelihood estimation of sparse topic distributions in topic models and its applications to Wasserstein document distance calculations
Xin Bing, Florentina Bunea, Marten Wegkamp and Seth-Strimmas Mackey. Cornell University
11:15-11:40 High-dimensional principle component analysis with heterogeneous missingness
Ziwei Zhu1, Tengyao Wang2 and Richard Samworth3.
1 University of Michigan, Ann Arbor 2 London School of Economics 3 University of Cambridge

Session 1C: Some Advances In Statistical Machine Learning
Location: HPNP G101
Organizer: Taps Maiti, Michigan State University.
Chair: Vojtech Kejzlar, Skidmore College.
10:00-10:25 Structurally Sparse Bayesian Neural Networks: Spike and Slab Shrinkage Priors
Sankeet Jantre. Shrijita Bhattacharya and Tapabrata Maiti. Michigan State University
10:25-10:50 An Adaptive Stochastic Approximation Algorithm for Randomized Decision GAN
Faming Liang. Purdue University
10:50-11:15 Volcano and valley prior with adhesive shrinkage for high dimensional data
Liangliang Zhang. Case Western Reserve University
11:15-11:40 Information-preserving Bayesian models for efficient and robust learning
Sandeep Madiredly. Argonne National Laboratory

Session 1D: Machine Learning/Artificial Intelligence In Biomedical Research With 'big' Data
Location: HPNP G103
Organizer: Xiang-Yang Lou, University of Florida/Department of Biostatistics, Qing Lu, University of Florida/Department of Biostatistics.
Chair: Xiang-Yang Lou, University of Florida/Department of Biostatistics.
10:00-10:25 AI for Regulatory Science
Weida Tong. FDA
10:25-10:50 Causal networks for drug discovery

Tao Xu, Shicheng Guo, Jinyung Zhao and Momiao Xiong. 1University of Florida 2University of Wisconsin-Madison 3University of Texas Health Science Center at Houston

10:50-11:15 New Toolkits for Disease Network Biology

Jake Chen. UAB Informatics Institute

11:15-11:40 Achieving Differential Privacy with Matrix Masking in Big Data

Aidong Ding1, *Samuel Wu2, Guanhong Miao2 and Shigang Chen2.* 1Northeastern University 2University of Florida

Session 1E : Statistical Challenges And Advances In Complex Data Analysis

Location: HPNP G114

Organizer: Yichuan Zhao, Georgia State University.

Chair: Yichuan Zhao, Georgia State University.

10:00-10:25 Nontraditional Statistical Methods based on Wasserstein Distances and Conformal Prediction Set

Xiaoming Hao. Georgia Institute of Technology

10:25-10:50 Bayesian Spatially Varying Weight Neural Networks with the Soft-Thresholded Gaussian Process Prior

Jian Kang. University of Michigan

10:50-11:15 Some Recent Advances on the analysis of Interval-Censored Case-cohort Failure Time Data

(Tony) Jianguo Sun. University of Missouri

11:15-11:40 An Efficient Method for Clustering Multivariate Longitudinal Data

Junyi Zhou1, *Ying Zhang2 and Wanzhu Tu3.* 1Aigen Inc 2UNMC 3Indiana University

Session 1F : Statistical Methods And Applications For Analyzing Real-World Data

Location: HPNP G301

Organizer: Kelly Zou, Viatris.

Chair: Ying Lu, Stanford University.

10:00-10:25 WeightP2V: a flexible risk prediction framework with patient representation weighted by medical concepts

Jia Guo and *Shuang Wang.* Columbia University

10:25-10:50 Efficient Algorithms and Implementation of a Semiparametric Joint Model for Longitudinal and Competing Risks Data: With Applications to Massive Biobank Data

Shanpeng Li1, Ning Li1, Hong Wang2, Jin Zhou3, Hua Zhou1 and *Gang Li1.* 1UCLA 2Central South University

10:50-11:15 A statistical quality assessment method for longitudinal observations in electronic health record data with an application to the VA million veteran program

Hui Wang1, Ilana Belitskaya-Levy1, Fan Wu2, Jennifer Lee2, Mei-Chiung Shih3, Philip Tsao2 and *Ying Lu.* 1Department of Veterans Affairs, Palo Alto, CA, USA 2Stanford University

11:15-11:40 Floor Discussion.

Session 1G : Recent Advances In Survival And Recurrent Events Analysis For Complex Data Structures

Location: HPNP 1101

Organizer: Dongdong Li, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute.

Chair: Dongdong Li, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute.

10:00-10:25 Structured variable selection in Cox model with time-dependent covariates

Guanbo Wang1, Yi Yang1, Mirelle Schnitzer2, Tom Chen3, Rui Wang3 and Robert Platt4. 1McGill University 2University of Montreal 3Harvard University

10:25-10:50 Robust Estimation for Recurrent Event Analysis in the Presence of Informative Event Censoring

Tom Chen1, Rui Wang1 and Victor Degruttola2. 1Harvard Pilgrim Health Care and Harvard Medical School 2Harvard School of Public Health

10:50-11:15 Variance Estimation for Cox Model When Using Propensity Score Weighting

Di Shu1, Jessica G Young2, Sengwee Toh3 and Rui Wang2. 1University of Pennsylvania 2Harvard University

11:15-11:40 Statistical Analysis of Recurrent Events from Administrative Databases

Yi Xiong. Fred Hutchinson Cancer Center

Session 1H : Statistical Inference For Two-Phase Studies With Outcome-Dependent Sampling

Location: HPNP 1102

Organizer: Natalie DelRocco, University of Florida Department of Biostatistics.

Chair: Adam Ding, Northeastern University Department of Mathematics.

10:00-10:25 Robust methods for Two-Phase Studies under generalized linear models

Jacob Maronge1, Jonathan Schildcrout2 and Paul Rathouz3. 1University of Texas MD Anderson Cancer Center 2Vanderbilt University Medical Center 3Dell Medical School at the University of Texas at Austin

10:25-10:50 Epidemiological Study Designs for Quantitative Longitudinal Data

Jonathan Schildcrout, Chiara Digravio and Ran Tao. VUMC

10:50-11:15 Statistical Methods for Selective Biomarker Testing in Two-Phase Studies

Natalie Delrocco1, Adam Ding2 and Samuel Wu3. 1University of Florida 2Northeastern University

11:15-11:40 Design and Analysis Strategies with "Secondary" Use Data

Sarah Lotspeich. UNC
Session 2B : Advanced Research In Bio-Molecular And Imaging Data By Our Young Researchers
Location: HPNP G112
Organizer: Susmita Datta, Department of Biostatistics, University of Florida.
Chair: Zhigang Li, Department of Biostatistics, University of Florida.
13:00-13:25 Outcome-guided Bayesian Clustering for Disease Subtype Discovery Using High-dimensional Transcriptomic Data
Lingsong Meng and Zhiguang Huo. Department of Biostatistics, University of Florida
13:25-13:50 Double soft-thresholded multigroup model for vector-valued image regression with application to DTI imaging
Arkaprava Roy and Zhou Lan. University of Florida
Yale University
13:50-14:15 Joint analysis and visualization of DNA methylation and nucleosome occupancy in single-molecule and single-cell data
Rhonda Bacher. University of Florida
14:15-14:40 Semiparametric estimation for length-biased interval-censored data with a cure fraction
Yao Sheng Chen, Yingwei Peng, Hsin-Jen Chen and Chyong-Mei Chen. Tunghai University
Queen's University
National Yang Ming Chiao Tung University
14:15-14:40 Floor Discussion.

Session 2C : Emerging Topics In Statistical Learning For Biomedical Data
Location: HPNP G101
Organizer: Li-Xuan Qin, Memorial Sloan Kettering Cancer Center.
Chair: Carrie Wright, Johns Hopkins University.
13:00-13:25 A Semiparametric Approach to Developing Well-calibrated Models for Predicting Binary Outcomes
Yaqi Cao, Ying Yang and Jinbo Chen. University of Pennsylvania
Tsinghua University
13:25-13:50 How does data preprocessing impact statistical learning in microRNA studies?
Li-Xuan Qin. MSKCC
13:50-14:15 A Bayesian Reinforcement Learning Approach for Optimizing Combination Antiretroviral Therapy in People with HIV
Yanxun Xu, Wei Jin, Yang Ni and Leah Rubin. Johns Hopkins University
Texas A&M University
14:15-14:40 HID machine: A Random Forest-based High Order Interaction Discovery Method for High-Dimensional Genomic Data
Min Lu, Yifan Sha and Xi Chen. University of Miami

Session 2D : Statistics In Biosciences (Sibs): Real World Challenges And Recent Methodological Developments
Location: HPNP G103
Organizer: X. Joan Hu, Department of Statistics and Actuarial Science Simon Fraser University, Hongzhe Lee, University of Pennsylvania.
Chair: Hongkai Ji, Johns Hopkins Bloomberg School of Public Health.
13:00-13:25 Multi-sample single-cell RNA-seq data analysis and visualization - methods, software, and benchmark
Hongkai Ji, Boyang Zhang, Wenpin Hou, Zhicheng Ji, Zeyu Chen, E John Wherry and Stephanie Hicks. Johns Hopkins Bloomberg School of Public Health
Duke University School of Medicine
University of Pennsylvania Perelman School of Medicine
13:25-13:50 An efficient segmentation algorithm to estimate sleep duration from actigraphy data
Jonggyu Baek, Margaret Banker, Erica Jensen, Xichen She, Karen Peterson, Andrew Pitchford and Peter Song. University of Massachusetts Medical School
University of Michigan
Iowa State University
13:50-14:15 Adaptive Process Monitoring Using Covariate Information
Li-Xuan Qin and Peihua Qiu. Founding Chair, Department of Biostatistics
14:15-14:40 Adaptive Process Monitoring Using Covariate Information
Kai Yang. Founding Chair, Department of Biostatistics
14:15-14:40 Floor Discussion.

Session 2E : Some Recent Methods For Sequential Monitoring Of Complex Data
Location: HPNP G114
Organizer: Peihua Qiu, University of Florida.
Chair: Peihua Qiu, University of Florida.
13:00-13:25 A Robust Dynamic Screening System By Estimation of the Longitudinal Data Distribution
Lu You and Peihua Qiu. University of Florida
Peihua Qiu. Founding Chair, Department of Biostatistics
13:50-14:15 Statistical Quality Control Using Image Intelligence: A Sparse Learning Approach
Yicheng Kang. Bentley University
14:15-14:40 Adaptive Process Monitoring Using Covariate Information
Yuanjia Wang, Joseph Imperato, Kelly Zou, Jim Li and Tarek Hassan. IQVIA
Medical Analytics and Real-World Evidence, Viatris Inc
Global Therapeutic Area Lead, Ophthalmology, Viatris Inc

Session 2F : Big Data, Machine Learning And Graphical Methods
Location: HPNP G301
Organizer: Kelly Zou, Viatris.
Chair: Yuqi Gu, Columbia University.
13:00-13:25 A Latent State Space Model for Learning Brain Dynamics for Mental Disorders
Yuanjia Wang. Columbia University
Joseph Imperato, Kelly Zou, Jim Li and Tarek Hassan. IQVIA
Medical Analytics and Real-World Evidence, Viatris Inc
Global Therapeutic Area Lead, Ophthalmology, Viatris Inc
Session 2G: Recent Development in Survival Analysis in Clinical Trials

Location: HPNP 1101
Organizer: Tianmeng Lyu, Novartis, Dong Xi, Gilead Sciences.
Chair: Dong Xi, Gilead Sciences.

13:00-13:25 On the Use of Restricted Mean Survival Time in Time-to-Event Data Analysis
Lihui Zhao. Northwestern University

Yi Liu1, Miao Yang2, Siyong Kil1, Jiang Li1, Shoubhik Mondal1, Hong Tian2, Liwei Wang1, Yue Shentu1 and Godwin Yang6. 1Columbia University 2Duke University

13:50-14:15 A MCP-Mod approach to designing and analyzing survival trials with potential non-proportional hazards
Xiaodong Luo, Yuan Sun and Zhixing Xu. Sanofi

14:15-14:40 Bayesian inference for a principal stratum estimand on recurrent events truncated by death
Tianmeng Lyu, Björn Bornkamp, Guenther Mueller-Velten and Heinz Schmidli. Novartis

Session 2H: Challenges and Recent Developments in Multi-outcome Analysis

Location: HPNP 1102
Organizer: Ming Wang, Penn State College of Medicine.
Chair: Ming Wang, Penn State College of Medicine.

13:00-13:25 Alternative multivariate endpoints and related statistical models for clinical trials in Alzheimer disease
Guoqiao Wang. Division of Biostatistics, Washington University in St Louis

13:25-13:50 Joint multivariate copula-frailty modeling of multiple-type recurrent events and the terminal event
Menglu Liang and Ming Wang. Penn State College of Medicine

13:50-14:15 Knowledge-guided Bayesian Factor Analysis for Integrative Analysis of Multi-Omics Data
Qiyiwen Zhang, Changhee Chang and Qi Long. University of Pennsylvania

14:15-14:40 Synergistic Self-learning Approach to Establishing Individualized Treatment Rules from Multiple Benefit Outcomes in a Calcium Supplementation Trial
Yiwang Zhou1 and Peter Song2. 1St. Jude Children’s Research Hospital 2Department of Biostatistics, University of Michigan
Session 3C: Machine Learning And Deep Learning Methods For Complex And Big Data

Location: HPNP G101
Organizer: Yichuan Zhao, Georgia State University
Chair: Yichuan Zhao, Georgia State University

15:00-15:25 Generative models for diabetic retinopathy
Zhiyang Zhou. Purdue University

15:25-15:50 Divide and conquer approaches for nonparametric regression and variable selection
Sapuni Chandrasena and Rong Liu. University of Toledo

15:50-16:15 A Bayesian Semi-supervised Approach to Keyword Extraction with Only Positive and Unlabeled Data
Guanshen Wang1, Yichen Cheng2, Yuxin Xia2, Qiang Lin2 and Xinlei Wang1. Southern Methodist University
1Georgia State University 2University of Science and Technology of China

16:15-16:40 Deep learning approaches for predicting virus-host interactions and drug response
Zhongming Zhao. University of Texas Health Science Center at Houston

Session 3D: Advance In Statistical Methods For Complex Data

Location: HPNP G103
Organizer: Dehan Kong, University of Toronto
Chair: Dehan Kong, University of Toronto

15:00-15:25 Predicting long-term breast cancer risk with mammogram imaging data
Shu Jiang1, Jiguod Cao2, Bernard Rosner3 and Graham Colditz1.
1Washington university school of medicine 2Simon Fraser University 3Harvard School of Medicine

15:25-15:50 Fighting Noise with Noise: Causal Inference with Many Candidate Instruments
Xinyi Zhang, Linbo Wang, Stanislav Volgushev and Dehan Kong. University of Toronto

15:50-16:15 Smooth nonparametric dynamic prediction for competing risks via deep learning
Zhiyang Zhou. University of Manitoba

16:15-16:40 Distributed Cox Proportional Hazards Model Using Summary-level Information
Dongdong Li1, Wenbin Lu2, Di Shu3, Sengwee Toh1 and Rui Wang1.
1Harvard Medical School 2North Carolina State University 3University of Pennsylvania Perelman School of Medicine 4Harvard Medical School and Harvard T.H. Chan School of Public Health

Session 3E: Recent Advancement In Statistical Learning Methods For High-Dimensional Biomedical Data

Location: HPNP G114

15:25-15:50 Feature Gradient Flow for Interpretation of Deep Learning Models
P. Thomas Fletcher. University of Virginia

Organizer: Zhiguang Huo, Department of Biostatistics, University of Florida
Chair: Zhiguang Huo, Department of Biostatistics, University of Florida

15:00-15:25 On p-value combination of independent and frequent signals: asymptotic efficiency and Fisher ensemble
Yusi Fang1, Chang Chang2 and George Tseng3.
1Biostatistics, University of Pittsburgh 2Applied Math, National Sun Yat-sen University

15:25-15:50 Improve Health Equality for Polygenic Risk Score (PRS) by Joint Penalized Regression of GWAS Summary Statistics from Two Ancestries
Peng Liu1, Max G’sell1, Bernie Delvin2 and Kathryn Roeder2.
1Carnegie Mellon University 2University of Pittsburgh

15:50-16:15 High-dimension to high-dimension screening for detecting genome-wide epigenetic regulators of gene expression
Hongjie Ke1, Zhao Ren2, Shuo Chen1, George Tseng2, Jianfei Qi1 and Tianzhou Ma1.
1University of Maryland 2University of Pittsburgh

16:15-16:40 The mediating role of neuroimaging data in age-related cognitive decline
Hwiyoung Lee and Shuo Chen. University of Maryland, Baltimore

Session 3F: Advanced Statistical Learning Methods For Dynamic Systems

Location: HPNP G301
Organizer: Rongjie Liu, Florida State University
Chair: Rongjie Liu, Florida State University

15:00-15:25 A Computing Algorithm for Parameter Estimation of Ultra-high Dimensional VAR Model
Hongyu Miao. Florida State University

Halin Wu. University of Texas Health Science Center at Houston

15:50-16:15 Nonparametric Bayesian Q-learning for adjusting partial compliance in multi-stage randomized trials
Indrabbat Bhattacharya, Brent Johnson and Ashkan Ertefaie. University of Rochester

16:15-16:40 Dynamic Topological Data Analysis for Brain Networks
Moo Chung. University of Wisconsin-Madison

Session 3G: Geometric Statistics In Medical Image Computing

Location: HPNP 1101
Organizer: Hani Doss, University of Florida
Chair: Hani Doss, University of Florida

15:00-15:25 Statistical Analysis of Shape Networks
Anuj Srivastava, Xiaoyang Guo, Aditi Basu Bal and Tom Needham. Florida State University

15:25-15:50 Feature Gradient Flow for Interpretation of Deep Learning Models
P. Thomas Fletcher. University of Virginia
Session 3H: The Jiann-Ping Hsu Invited Session on Biostatistical and Regulatory Sciences
Location: HPNP 1102
Organizer: Lili Yu and Karl Peace, JPH College of Public Health, Georgia Southern University.
Chair: Lili Yu and Karl Peace, JPH College of Public Health, Georgia Southern University.
15:00-15:25 Covariate-Balancing-Aware Interpretable Deep Learning Models for Treatment Effect Estimation
 • Kan Chen, Qishuo Yin and Qi Long. University of Pennsylvania
15:25-15:50 How to Implement the “One Patient, One Vote” Principle under the Framework of Estimand?
 • Naitee Ting. Boehringer ingelheim
15:50-16:15 Cox Model for Weibull Survival Data
 Mario Keko, • Marwan Alsharman, Djhennie Dalmacy, Lili Yu. Georgia Southern University
16:15-16:40 An Application of the Cure Model to A Cardiovascular Clinical Trial
 • Varadan Sevilimedu, S Ma, P Hartigan, TC Kyriakides. Memorial Sloan Kettering Cancer Center

Sessions 4A-4H: Mon, June 20, 17:00-18:40 (EDT)

Session 4A : Recent Developments For Causal Inference: Theory, Method, And Application (This session is co-sponsored by the Caucus for Women in Statistics (CWS))
Location: HPNP G312
Organizer: Guanyu Hu, University of Missouri.
Chair: Guanyu Hu, University of Missouri.
17:00-17:25 Calibrated Optimal Decision Making with Multiple Data Sources and Limited Outcome
 • Hengrui Cai, Wenbin Lu and Rui Song. North Carolina State University
17:25-17:50 A Focusing Framework for Testing Bi-Directional Causal Effects with GWAS Summary Data
 Ting Ye. University of Washington
17:50-18:15 Sensitivity Analysis of Individual Treatment Effects: A Robust Conformal Inference Approach
 Ying Jin1, • Zhimei Ren2 and Emmanuel Candès1. 1Stanford University 2University of Chicago
18:15-18:40 Causal inference of time-varying effects in non-stationary time series using mobile health data
 • Xiaoxuan Cai1, Jukka-Pekka Onnela2, Justin Baker3, Habib Rahimi-Eich1 and Linda Valeri1. 1Columbia University 2Harvard University 3McLean Hospital

Session 4B : High-Dimensional Statistical Inference For Big Complicated Data
Location: HPNP G112
Organizer: Gongjun Xu, Department of Statistics, University of Michigan, Yinqiu He, Data Science Institute, Columbia University.
Chair: Yinqiu He, Data Science Institute, Columbia University.
17:00-17:25 Anti-Concentration of Suprema of Gaussian Processes with Applications to High-Dimensional CLTs
 Alexander Giessing. University of Washington
17:25-17:50 Multiple-Splitting Projection Test for High-Dimensional Mean Vectors
 Wanjuan Liu1, • Xifan Yu2 and Runze Li3. 1LinkedIn Corporation 2University of Notre Dame 3Penn State University
17:50-18:15 Two-sample hypothesis testing of multiple-network data
 • Yinqiu He1, Xuming He3. Ji Zhu2 and Gongjun Xu2. 1Columbia University 2University of Michigan
18:15-18:40 Doubly Debias Lasso: High-Dimensional Inference under Hidden Confounding
 • Zijian Guo1, Domagoj Cevid2 and Peter Bühlmann2. 1Rutgers 2ETH, Zurich

Session 4C : New Fronts In Joint Modeling And Machine Learning
Location: HPNP G101
Organizer: Zhigang Li, University of Florida.
Chair: Lihui Zhao, Northwestern University.
17:00-17:25 Joint modeling for longitudinal and interval censored survival data
 Ding-Geng Chen. Arizona State University
17:25-17:50 Heterogeneous Data Integration And The Predictive Ability of Cancer Survival Models
 Y Guo. Health Outcomes & Biomedical Informatics, University of Florida
17:50-18:15 Regression Analysis of Mixed Panel-Count Data with Application to Cancer Studies
 • Yime Li1, Liang Zha2, Lei Liu3 and Leslie Robison4. 1St Jude Children’s Research Hospital 2Eisai 3Washington University 4St. Jude Children’s Research Hospital
18:15-18:40 Joint modeling in presence of informative censoring in palliative care studies
 • Quran Wu1, Michael Daniels2, Arej Jawahri3, Marie Bakitas4 and Zhigang Li3. 1Department of Biostatistics, University of Florida 2Department of Statistics, University of Florida 3Department of Oncology, Massachusetts General Hospital 4School of Nursing, University of Alabama at Birmingham

Session 4D : Knowledge-Guided Machine Learning And Statistical Modeling In Longitudinal Studies With Survival Endpoints
Location: HPNP G103
Organizer: Colin Wu, National Heart, Lung and Blood Institute.
Xin Tian, National Heart, Lung and Blood Institute.
Chair: Xin Tian, National Heart, Lung and Blood Institute.

17:00-17:25 Design and Analysis of a Multi-Platform Trial of Patients Hospitalized for COVID-19
Eric Leifer, Lucy Kornblith, Jeffrey Berger, Lana Castelucci, Michael Farkouh, Ewan Goligher, Patrick Lawler and Scott Berry. 1NIH/NHLI

17:25-17:50 Knowledge-Guided Model Building and Estimation with Time-to-Event Outcomes and Longitudinal Covariates
Colin O. Wu, Xiaoyang Ma and Xin Tian. 1Division of Intramural Research

17:50-18:15 Dynamic Risk Prediction Triggered by Intermediate Events Using Survival Tree Ensembles
Yifei Sun, Sy Han Chiou, Colin Wu, Meghan Megarry and Chiang-Yu Huang. 1Columbia University 2University of Texas at Dallas 3National Heart, Lung, and Blood Institute 4University of California San Francisco

18:15-18:40 Dealing With Competing Risks in Clinical Trials
James Troendle. NIH

Session 4E: Robust Information Integration From Multiple Studies In Clinical And Biomedical Research
Location: HPNP G114
Organizer: Ming Wang, Pennsylvania State University, Chixiang Chen, University of Maryland.
Chair: Chixiang Chen, University of Maryland.

17:00-17:25 On multi-site collaboration, data sharing, and analytic strategy in medical research
Jing Huang, Rui Duan and Yong Chen. 1University of Pennsylvania 2Harvard University

17:25-17:50 Integrating summary information from many external studies with heterogeneous populations
Peisong Han. University of Michigan

17:50-18:15 Data Integration Methods Targeting Underrepresented Populations in Precision Medicine
Rui Duan. Harvard University

18:15-18:40 Integrated Analysis of Randomized Clinical Trials with Real-World Data
Xiaofei Wang, Dasom Lee and Shu Yang. 1Duke University 2NC State University

Session 4F: Statistical Innovation In Complex And High Dimensional Data
Location: HPNP G301
Organizer: Jiaying Weng, Bentley University.
Chair: Zi Ye, Lehigh University.

17:00-17:25 Change detection in certain random intensity-driven point processes through repeated testing
Moinak Bhaduri. Bentley University

17:25-17:50 A nonparametric multi-sample test for high-dimensional compositional data with applications to the human microbiome
Qingyang Zhang. University of Arkansas

17:50-18:15 Minimum discrepancy approach for dimension reduction by filtered feature
Pei Wang. Miami University

18:15-18:40 Discussant: Ying Lu.

18:15-18:40 Floor Discussion.

Session 4H: Design And Analysis Of Computer Experiments
Location: HPNP 1102
Organizer: Abhyuday Mandal, University of Georgia.
Chair: Ting Zhang, University of Georgia.

17:00-17:25 Modeling and Active Learning for Experiments with Quantitative-Sequence Factors
Abhyuday Mandal. University of Georgia

17:25-17:50 Lioness Algorithm for Finding Optimal Design of Experiments
Hongzhi Wang, Qian Xiao and Abhyuday Mandal. University of Georgia

17:50-18:15 A Simulation Optimization Approach for Sequential Accelerated Life Testing via Approximate Bayesian Inference
Ye Chen, Qiong Zhang, Mingyang Li and Wenjun Cai. 1Virginia Commonwealth University 2Clemson University 3USF 4Virginia Tech

18:15-18:40 Optimal Crossover Designs for Generalized Linear Models
Jeevan Jankar, Abhyuday Mandal and Jie Yang. 1University of Georgia 2University of Georgia

Plenary Keynote Talk 2: Tue, June 21, 8:30-9:30 (EDT)

Session P2: Plenary Keynote Talk 2
Location: HPNP Auditorium (1404)
Organizer: ICSA Special Lecture Committee.
Chair: Somnath Datta, Ph.D., University of Florida.

8:30-9:30 Measuring housing activeness from multi-source big data and machine learning
Jianqing Fan. Princeton University
Sessions 5A-5H: Tue, June 21, 10:00-11:40 (EDT)

Session 5A: Statistical Methodologies in Causal Inference With Application in Drug Development
Location: HPNP G312
Organizer: Jiaru Li, Novartis Pharmaceuticals Corporation, Dong Xi, Gilead Sciences.
Chair: Tianmeng Lyu, Novartis Pharmaceuticals Corporation.

10:00-10:25 Time and Causality: Learning Causal Structures from Longitudinal Data
Siyi Deng¹, Jiarsui Lu² and Dong Xi³. ¹Cornell University ²Novartis pharmaceuticals corporation ³Gilead Sciences

10:25-10:50 Minimax optimal subgroup identification
Matteo Bonvini¹, Edward H. Kennedy¹ and Lake J. Keele².
¹Carnegie Mellon University ²University of Pennsylvania

10:50-11:15 A Bayesian Machine Learning Approach for Estimating Heterogeneous Survivor Causal Effects: Applications to a Critical Care Trial
Xinyuan Chen¹, Michael O. Harhay², Guangyu Tong³ and Fan Li³. ¹Mississippi State University ²University of Pennsylvania ³Yale University

11:15-11:40 Application of the causal inference in estimands for a principal stratum in clinical trials
Yongming Qu. Eli Lilly and Company

Session 5B: Recent Developments of Dimension Reduction in Integrating Big and Complex Data
Location: HPNP G112
Organizer: Zhihua Su, University of Florida.
Chair: Zhihua Su, University of Florida.

10:00-10:25 Nonlinear envelope model
Bing Li¹, Zhihua Su² and Dennis Cook³. ¹Penn State University ²University of Florida ³University of Minnesota

10:25-10:50 Asymptotic distribution for partial least square prediction when the number of sample is small
Liliana Forzani¹ and R. Dennis Cook². ¹Universidad del Litoral ²University of Minnesota

10:50-11:15 A unified framework to high dimensional sufficient dimension reduction
Shanshan Ding¹, Wei Qian¹ and Lan Wang². ¹University of Delaware ²University of Miami

11:15-11:40 Envelope-based Partial Least Squares with Application to Cytokine-based Biomarker Analysis for COVID-19
Yeonhee Park¹, Zhihua Su² and Dongjun Chang³. ¹University of Wisconsin ²University of Florida ³Ohio State University

Session 5C: Precision Digital Health Care Via Machine Learning (This session is co-sponsored by the Statistical Learning and Data Science (SLDS) Section of ASA)
Location: HPNP G101
Organizer: Glen Wright Colopy, LifeBell AI / ASA SL&DSS Section Program Chair.
Chair: Samaneh Nasiri, Harvard Medical School.

10:00-10:25 Designing Reinforcement Learning Algorithms for Digital Interventions: Pre-implementation Guidelines
Anna L. Trelle¹, Kelly W. Zhang¹, Inbal Nahum-Shani², Vivek Shetty³, Finale Doshi-Velez² and Susan A. Murphy³. ¹Harvard University ²University of Michigan ³University of California, Los Angeles

10:25-10:50 Oblique random survival forests version 2.0: faster and more interpretable
Byron Jaeger and Nicholas Pajewski. Wake Forest School of Medicine

10:50-11:15 Going Beyond Spike-and-slab: L1-ball Sparsity Prior With Applications On Image Data Analysis
Leo Duan and Maoran Xu. University of Florida

11:15-11:40 Floor Discussion.

Session 5D: Statistical Methods for Complex and High Dimensional Data
Location: HPNP G103
Organizer: Xueying Tang, University of Arizona.
Chair: Xueying Tang, University of Arizona.

10:00-10:25 Consistent and scalable Bayesian joint variable and graph selection for disease diagnosis leveraging functional brain network
Xuan Cao¹ and Kyounjae Lee². ¹University of Cincinnati ²Sungkyunkwan University

10:25-10:50 Bayesian mixture models, non-local prior formulations and MCMC algorithms
Jairo Alberto Fuquenepatino. UC Davis

10:50-11:15 Two-component Gibbs samplers: Convergence rate and asymptotic variance
Qian Qin¹ and Galin Jones². ¹University of Minnesota ²University of Minnesota

11:15-11:40 Efficient Algorithms and Theory for High-Dimensional Bayesian Varying Coefficient Models
Ray Bai. University of South Carolina

Session 5E: Modern Streaming Data Analysis: Change-Point Problems and Applications
Location: HPNP G114
Organizer: Jie Chen, Augusta University, Yajun Mei, Georgia Institute of Technology.
Chair: Ruizhi Zhang, University of Nebraska-Lincoln.

10:00-10:25 Detection of multiple change points in multiple profiles
Jie Chen¹ and Shirong Deng². ¹Augusta University ²Wuhan University

10:25-10:50 Change-point Analysis of Hourly Sky-cloudiness Conditions in Canada
Mo Li¹, QiQi Lu³ and Xiaolan Wang². ¹Virginia Commonwealth University ²Environment and Climate Change Canada

10:50-11:15 Learning under concept drift
Yaekai Sun. University of Michigan
10:00-10:25 Sensitivity Analysis under the f-Sensitivity Models: A Distributionally Robust Optimization Viewpoint
♦ Ying Jin1, Zhimei Ren2 and Zhengyuan Zhou3. 1Stanford University 2University of Chicago 3New York University

10:25-10:50 Fast Distributed Principal Component Analysis for Large-Scale Federated Data
♦ Shuting Shen, Junwei Lu and Xihong Lin. Harvard University

10:50-11:15 High-Dimensional Dynamic Process Monitoring By PCA-Based Sequential Learning
♦ Xiulin Xie and Peihua Qiu. University of Florida

11:15-11:40 Supervised Learning of Physical Activity Features from Functional accelerometer Data
♦ Margaret Banker and Peter X.K. Song. University of Michigan

Special Invited Talks: Tue, June 21, 13:00-14:30 (EDT)

Session S1 : Special Invited Talks
Location: HPNP Auditorium (1404)
Organizer: Somnath Datta, Ph.D., University of Florida.
Chair: Ji-Hyun Lee, Ph.D., University of Florida.

13:00-13:45 Lessons Learned from the COVID-19 Pandemic: A Statistician’s Reflection
Xihong Lin. Harvard University

13:45-14:30 Predictive model building through integration of information across disparate data sources and summary-statistics
Nilanjana Chatterjee. Johns Hopkins University

Sessions 6A-6H: Tue, June 21, 15:00-16:40 (EDT)

Session 6A : Recent Advances In Mendelian Randomization
Location: HPNP G312
Organizer: Chong Wu, Florida State University.
Chair: Chong Wu, Florida State University.

15:00-15:25 Inference of nonlinear causal effects with GWAS summary data
♦ Ben Dai1, Chunlin Li2, Haoran Xue2, Wei Pan2 and Xiaotong Shen2. 1The Chinese University of Hong Kong 2The University of Minnesota

15:25-15:50 Causal analysis with rerandomization estimators (CARE)
♦ Chong Wa1 and Jingshen Wang2. 1FLORIDA STATE UNIVERSITY 2University of California, Berkeley

15:50-16:15 Breaking the Winner’s Curse in Mendelian Randomization: Rerandomized Inverse Variance Weighted Estimator
Xinwei Ma1, Jingshen Wang2 and Chong Wa3. 1UC San Diego 2UC Berkeley 3Florida State University
Session 6B : Recent Advances In Dimension Reduction Techniques
Location: HPNP G112
Organizer: Dipankar Bandyopadhyay, Virginia Commonwealth University.
Chair: Shanshan Ding, University of Delaware.

15:00-15:25 Significance testing for canonical correlation analysis in high dimensions
Ian Mckeeag1 and Xin Zhang2. 1Columbia University 2Florida State University

15:25-15:50 Dimension Reduction Forests: Local Variable Importance using Structured Random Forests
Joshua Loyâ1, Ruqiang Zhu, Yifan Cui2 and Xin Zhang3. 1University of Illinois at Urbana-Champaign 2National University of Singapore 3Florida State University

15:50-16:15 Envelope model for function-on-function linear regression
Zhihua Su1, Bing Li2 and Dennis Cook3. 1University of Florida 2Pennsylvania State University 3University of Minnesota

16:15-16:40 Floor Discussion.

Session 6C : Statistical Methods For Assessing Genomic Heterogeneity
Location: HPNP G101
Organizer: Yuchao Jiang, University of North Carolina at Chapel Hill.
Chair: Yuchao Jiang, University of North Carolina at Chapel Hill.

15:00-15:25 Robust Statistical Inference for Cell Type Deconvolution
Jingshu Wang and Dongyue Xie. University of Chicago

15:25-15:50 Single-cell eco-evolutionary dynamics of intratumor heterogeneity
Meghan Ferrall-Fairbanks. University of Florida

15:50-16:15 Neural Network Models for Sequence-Based TCR and HLA Association Prediction
Si Liu, Phil Bradley and Wei Sun. Fred Hutchinson Cancer Center

16:15-16:40 A statistical framework for cell-type-specific transcriptomics-wide association studies with an application to breast cancer
Xiaoyu Song. Icahn School of Medicine at Mount Sinai

Session 6D : Novel Statistical Modeling And Computing Methods For Complex Data
Location: HPNP G103
Organizer: Victor Hugo Lachos Davila, University of Connecticut.
Chair: Victor Hugo Lachos Davila, University of Connecticut.

15:00-15:25 New Bounded response models for target variables
Jose Ordrones1, Marcos Prates2, Jorge Bazan3 and Victor Lachos4. 1Federal University of Minas Gerais 2ICMC - USP 3University of Connecticut 4Florida State University

15:25-15:50 Penalized complexity priors for the skewness parameter of power links
Jose Ordrones1, Marcos Prates2, Jorge Bazan3 and Victor Lachos4. 1Federal University of Minas Gerais 2ICMC - USP 3University of Connecticut 4Florida State University

15:50-16:15 Linear Mixed-effects Models For Censored Data With Serial Correlation Errors Using The Multivariate Student’s T-distribution
Kelin Zhong1, Rommy C. Olivari2, Aldo M. Garay2 and Victor H. Lachos3. 1Department of Statistics, UConn 2Department of Statistics, Federal University of Pernambuco 3Department of Statistics, University of Connecticut

16:15-16:40 Floor Discussion.

Session 6E : Modern Streaming Data Analysis: Detection And Identification
Location: HPNP G114
Organizer: Jie Chen, Augusta University, Ruizhi Zhang, University of Nebraska – Lincoln.
Chair: Ruizhi Zhang, University of Nebraska – Lincoln.

15:00-15:25 Low-Rank Robust Subspace Tensor Clustering for Metro Passenger Flow Modeling
Nurreit Sering, Jiuyun Hu and Hao Yan. Arizona State University

Zexian Lu1, Yunxiao Chen2 and Xiaoou Li3. 1University of Minnesota 2London School of Economics and Political Sciences

15:50-16:15 Differentially private approaches for streaming data analysis
Wanrong Zhang. Harvard University

16:15-16:40 Active sequential change-point detection under sampling control
Yajun Mei. Georgia Institute of Technology

Session 6F : Deep Learning With Application And Uncertainty Quantification
Location: HPNP G301
Organizer: Xinping Cui, University of California, Riverside.
Chair: Xinping Cui, University of California, Riverside.

15:00-15:25 Random walk with restart with graph embedded neural network to inform potential targets
Yushi Liu, Bochao Jia and Rick Higgs. Eli Lilly

15:25-15:50 Learning interactions in Reaction Diffusion Equation with Deep Learning
Sichen Chen1, Nicolas Brunel2, Xin Yang3 and Xinping Cui1. 1Department of Statistics, University of California, Riverside 2Laboratoire de Mathématiques et Modélisation d’Evry, ENSIEE 3Department of Mathematics, University of California, Riverside

15:50-16:15 An optimal transport approach for selecting a representative subsample
Ping Ma. University of Georgia
16:15-16:40 Distribution-free uncertainty quantification for classification

Sasha Podkopaev and Aaditya Ramdas. Carnegie Mellon University

17:00-17:25 LongStrain: An integrated strain-level analytic pipeline utilizing longitudinal metagenomics data

Boyuan Zhou and *Huilin Li.* New York University

17:25-17:50 An all-in-one statistical framework that simulates realistic single-cell omics data and infers cell heterogeneity structure

Jingyi Jessica Li. UCLA

Session 6G : Recent Advances In Clinical Trial Design And Practice
Location: HPNP 1101
Organizer: Shu Wang, University of Florida, Chung-Chou (Joyce) Chang, University of Pittsburgh.
Chair: Chung-Chou (Joyce) Chang, University of Pittsburgh.

15:00-15:25 A hybrid efficacy/effectiveness estimand for binary composite endpoints in clinical trials

Xingyuan Li and Nathan Morris. Eli Lilly and Company

15:25-15:50 Bayesian adaptive model selection design for optimal biological dose finding in phase I/II clinical trials

Ruitao Lin. The University of Texas MD Anderson Cancer Center

15:50-16:15 A Simulation Study Evaluating Phase I Clinical Trial Designs for Combinational Agents

Shu Wang, Elias Sayour and Ji-Hyun Lee. University of Florida

16:15-16:40 Bayesian Response Adaptive Randomization Design with A Composite Endpoint of Mortality and Morbidity

Zhongyang Xu and Chung-Chou Chang. University of Pittsburgh

Session 6H : New Developments In Modern Nonparametric Statistics And The Applications
Location: HPNP 1102
Organizer: Yichuan Zhao, Georgia State University.
Chair: Yichuan Zhao, Georgia State University.

15:00-15:25 Doubly robust U-statistic with applications

Ao Yuan, Anqi Yin and Ming Tan. Georgetown University

15:25-15:50 Joint Semiparametric Models for Case-Cohort Designs

Weibin Zhong1 and *Guoqing Diao*2. 1Bristol Myers Squibb 2George Washington University

15:50-16:15 Novel empirical likelihood inference for the mean difference with right-censored data

Kangni Alemadjro1 and *Yichuan Zhao*2. 1Purdue University 2Georgia State University

16:15-16:40 Asymptotic Normality of Gini Correlation in High Dimensional Time Series with Applications to the K-sample Problem

Yongli Sang1 and Xin Dang2. 1University of Louisiana at Lafayette 2University of Mississippi

Session 7A : Novel Statistical Methods For -Omic Data Analysis
Location: HPNP G312
Organizer: Xiaoyu Song, Icahn School of Medicine at Mount Sinai.
Chair: Xiaoyu Song, Icahn School of Medicine at Mount Sinai.

17:00-17:25 Collaborative Spectral Clustering in Attributed Networks

Pengsheng Ji. Univ. of Georgia

17:25-17:50 High Quantile Regression for Tail Dependent Time Series

Ting Zhang. University of Georgia

17:50-18:15 Dimension Reduction in Time Series Under the Presence of Conditional Heteroscedasticity

Murilo Dasilva, *T. N. Sriram* and Yuan Ke. University of Georgia

18:15-18:40 Multiple autocovariance changepoints problems in high-dimensional time series

Yuan Ke. University of Georgia

Session 7B : Modern Time Series And Network Methods In Data Science.
Location: HPNP G112
Organizer: Xinping Cui, University of California, Riverside, Ping Ma, University of Georgia.
Chair: Ping Ma, University of Georgia.

17:00-17:25 Data-Type Weighted Multi-Omics Spectral Clustering for Disease Subtyping

Peifeng Ruan and Hongyu Zhao. Yale University

17:25-17:50 A hidden Markov model approach for a joinpoint trend analysis

Hyoyoung Choo-Wosoba, Philip Rosenburg and *Paul Albert.* National Cancer Institute

17:50-18:15 A hidden Markov model approach for a joinpoint trend analysis

Hyoyoung Choo-Wosoba, Philip Rosenburg and *Paul Albert.* National Cancer Institute

18:15-18:40 Discussant: Paul Albert.
Session 7D : Statistical Advances And Applications In Analyzing Large Scale & Multi-Omic Single-Cell Data
Location: HPNP G103
Organizer: Rhonda Bacher, University of Florida; Department of Biostatistics.
Chair: Rhonda Bacher, University of Florida; Department of Biostatistics.
17:00-17:25 iscTrack, a semi-supervised algorithm and interactive single-cell tool to track emerging transcriptional states in serial samples
 Jiannong Li, Scott Cukras, Sathya Sriramareddy, Keiran Smalley, Xiaqing Yu and Ann Chen. Moffitt Cancer Center
17:25-17:50 Deep learning methods for cell type identification and gene expression imputation
 Sijie Yao, Xiaqing Yu and Xuefeng Wang. Moffitt Cancer Center
17:50-18:15 Quadratic Discriminant Analysis by Projection
 Ruiyang Wu and Ning Hao. University of Arizona
17:50-18:15 A Doubly-Enhanced EM Algorithm for Model-Based Tensor Clustering
 Qing Mai, Xin Zhang, Yuqing Pan and Kai Deng. Florida State University
18:15-18:40 Stochastic Low-rank Tensor Bandits for Multi-dimensional Online Decision Making
 Will Wei Sun. Purdue University

Session 7E : Modern Streaming Data Analysis: Process Monitoring
Location: HPNP G114
Organizer: Jie Chen, Augusta University, Yajun Mei, Georgia Institute of Technology.
Chair: Yajun Mei, Georgia Institute of Technology.
17:00-17:25 Fault classification for high-dimensional data streams: A Directional Diagnostic Framework Based on Multiple Hypothesis Testing
 Dongdong Xiang. East China Normal University
17:25-17:50 Adversarially Robust Sequential Hypothesis Testing
 Shuchen Cao1, Ruizhi Zhang1 and Shaofeng Zou2. University of Nebraska-Lincoln, 2University of Buffalo, The State University of New York
17:50-18:15 Recent advances in quality and industrial analytics
 Fugee Tsung. HKUST
18:15-18:40 Asymptotic Optimality Theory for Active Quickest Detection with Two Affected Streams
 Qunzhi Xu. George Institute of Technology

Session 7F : Discriminant And Cluster Analysis For Complex Data
Location: HPNP G301
Organizer: Xin (Henry) Zhang, Florida State University.
Chair: Guanyu Hu, University of Missouri.
17:00-17:25 Conditional probability tensor decompositions for multivariate categorical response regression
 *Aaron Molstad1 and Xin Zhang2. Florida State University
17:25-17:50 Quadratic Discriminant Analysis by Projection
 Ruiyang Wu and Ning Hao. University of Arizona
17:50-18:15 A Doubly-Enhanced EM Algorithm for Model-Based Tensor Clustering
 Qing Mai, Xin Zhang, Yuqing Pan and Kai Deng. Florida State University
18:15-18:40 Stochastic Low-rank Tensor Bandits for Multi-dimensional Online Decision Making
 Will Wei Sun. Purdue University

Session 7G : Design And Analysis In Vaccine Development And Its Challenges
Location: HPNP 1101
Organizer: Bo Fu, Sanofi, Jun Zhao, Astellas.
Chair: Bo Fu, Sanofi.
17:00-17:25 Assessing the Role of Antibody in Vaccine Protection
 Dean Follmann. NIH
17:25-17:50 Sensitivity Analysis for Evaluating Principal Surrogate Endpoints Relaxing the Equal Early Clinical Risk Assumption
 Ying Huang, Yingying Zhuang and Peter Gilbert. Fred Hutchinson Cancer Research Center
17:50-18:15 Durability of Covid-19 Vaccines
 Yu Gu. University of North Carolina
18:15-18:40 Statistical Consideration for Accelerated COVID-19 Vaccine Clinical Development in the Pandemic
 James Zhou. HHS/ASPR/BARDA

Session 7H : Methods For Inference On Variable Importance Using Machine Learning (This session is co-sponsored by the Statistical Learning and Data Science (SLDS) Section of ASA)
Location: HPNP 1102
Chair: Brian Williamson, Kaiser Permanente Washington Health Research Institute.
17:00-17:25 Inference for model-agnostic variable importance
 *Brian Williamson1, Susan Shortreed1, Peter Gilbert2, Noah Simon3, and Marco Carone6. 1Kaiser Permanente Washington Health Research Institute 2Fred Hutchinson Cancer Research Center 3University of Washington
17:25-17:50 Variable importance measure for spatial machine learning models with application to air pollution exposure prediction
 Si Cheng, Ali Shojaie, Lianne Sheppard and Adam Szpiro. University of Washington
17:50-18:15 Floodgate: inference for model-free variable importance
 Lu Zhang and Lucas Janson. Harvard University
18:15-18:40 Regularization on Ensembles of Tree and Variable importance
 Siyu Zhou and Lucas Mentch. University of Pittsburgh
Sessions 8A-8H: Wed, June 22, 10:00-11:40 (EDT)

Banquet Talk: Tue, June 21, 20:00-20:45 (EDT)

Session S2 : Banquet Talk
Location: Ben Hill Griffin Stadium Champions Club (121 Gale Lemerand Drive)
Organizer: ICSA Special Lecture Committee.
Chair: Samuel Wu, Ph.D., University of Florida.

20:00-20:45
Lost in translation
Lee-Jen Wei. Harvard University

Plenary Keynote Talk 3: Wed, June 22, 8:30-9:30 (EDT)

Session P3 : Plenary Keynote Talk 3
Location: HPNP Auditorium (1404)
Organizer: ICSA Special Lecture Committee.
Chair: Guogen Shan, Ph.D., University of Florida.

8:30-9:30
Inference for longitudinal data after adaptive sampling
Susan Murphy. Harvard University

Sessions 8A-8H: Wed, June 22, 10:00-11:40 (EDT)

Session 8A : Ultra-High Dimensional Variable Selection And Zero-Inflated Negative Binomial Spatial And Temporal Regression
Location: HPNP G312
Organizer: Hsin-Hsiung Huang, University of Central Florida.
Chair: Hsin-Hsiung Huang, University of Central Florida.

10:00-10:25
Spatiotemporal Zero-Inflated Bayesian Negative Binomial Regression Using Nearest Neighbor Gaussian Process and Polya-Gamma Mixtures
Qing He and Hsin-Hsiung Huang. University of Central Florida

10:25-10:50
An Exchangeable Prior on Partitions for Clustering
Charles Harrison, Qing He and Hsin-Hsiung Huang. University of Central Florida

10:50-11:15
Multi-Omics Integrative Analysis for Incomplete Data Using Weighted p-value Adjustment Approaches
Wenda Zhang1, Joshua Habiger2, Hsin-Hsiung Huang3 and *Yen-Yi Ho4.* 1University of South Carolina 2Oklahoma State University 3University of Central Florida

11:15-11:40
Sparse Bayesian Matrix-variate Regression with High-dimensional Binary Response Data
Hsin-Hsiung Huang1 and Shao-Shuan Wang2. 1University of Central Florida 2National Central University

Session 8B : Recent Developments In Functional Data Analysis
Location: HPNP G112
Organizer: Gang Li, UCLA.
Chair: Gang Li, UCLA.

10:00-10:25
Multilevel Modeling of Spatially Nested Functional Data: Spatiotemporal Patterns of Hospitalization Rates in the U.S. Dialysis Population
Yihao Li1, Danh Nguyen2, Sadiipta Banerjee1, Connie Rhee3, Kamyar Kalantar-Zadeh4, Erna Kurum5 and *Damlak Senturk.* 1UCLA 2UCI 3UCRiverside

10:25-10:50
Online Estimation for Functional Data
Fang Yao. Beijing University

10:50-11:15
Functional ANOVA for High-Dimensional Spectral Analysis
Robert Krafty1, Marie Tuft2, Fabio Ferrarelli3, Ori Rosen4 and Zeda Li5. 1Emory University 2Sandia National Laboratory 3University of Pittsburgh 4University of Texas 5Baruch, College, City University of New York

11:15-11:40
Factor-augmented model for functional data
Yuan Gao1, Han Lin Shang2 and *Yanrong Yang3.* 1The Australian National University 2Macquarie University

Session 8C : Recent Advances In Robust Statistical Models For Censored And Missing Data
Location: HPNP G101
Organizer: Viceror Hugo Lachos Davila, University of Connecticut.
Chair: Jorge Luis Bazan Guzman, University of Sao Paulo.

10:00-10:25
Censored autoregressive regression models with Student-t innovations
Katherine Andreina Loorvaleriano1, *Fernanda Langschumacher2, Christian Galarza3 and Larissa Avilamatos4.* 1University of Campinas 2Ohio State University 3Escuela Superior Politécnica del Litoral

10:25-10:50
Lasso regularization for censored skew-t regression and high dimensional predictors
Victor Hugo Lachos. University of Connecticut

10:50-11:15
Extending multivariate Student-s-t semiparametric mixed models for longitudinal data with censored responses and heavy tails
Thalita Mattos1, Victor Hugo Lachos2, Luis Mauricio Castro3 and *Larissa Matos3.* 1Universidade Estadual de Campinas 2University of Connecticut 3Pontificia Universidad Católica de Chile

11:15-11:40
Floor Discussion.

Session 8D : Recent Advances In Latent Variable Analysis
Location: HPNP G103
Organizer: Gongjun Xu, University of Michigan.
Chair: Xiangbin Meng, Northeast Normal University.

10:00-10:25
A Note on Statistical Inference for Noisy Incomplete Binary Matrix
Gongjun Xu. University of Michigan

10:25-10:50
VEMIRT: A Variational EM Algorithm-based Shiny App for High-dimensional IRT Applications
Chun Wang4, Gongjun Xu2, Chenchen Ma3, Ruoyi Zhu4 and Jiaying Xiao1. 1University of Washington 2University of Michigan

10:50-11:15
A random effect hidden Markov model for process data
Xueying Tang. University of Arizona
10:00-10:25 Bayesian data compression

Rajarshi Guhaniyogi\(^1\) and *Aaron Scheffler*\(^2\). \(^1\)Texas A & M University, \(^2\)UC San Francisco

10:25-10:50 A ‘Divide-and-Conquer’ AECM Algorithm for Large non-Gaussian Longitudinal Data

Reuben Retnam\(^1\), *Sanvesh Srivastava*\(^2\) and *Dipankar Bandyopadhyay*\(^3\). \(^1\)Virginia Commonwealth University, \(^2\)University of Iowa, \(^3\)University of Michigan

10:50-11:15 Bayesian Generalized Sparse Symmetric Tensor-on-Vector Regression

Sharmistha Guha and *Rajarshi Guhaniyogi*. Texas A&M University

11:15-11:40 Ordinal Causal Discovery

Yang Ni and *Bani Mallick*. Texas A&M University

Sessions 8F: Statistical Computation Of Big Data With Biomedical Applications

11:15-11:40 A Novel Causal Mediation Analysis Approach for Zero-Inflated Count Mediators

Meilin Jiang\(^1\), *Seonjoo Lee*\(^2\), *A. James O’malley*\(^3\), *Yaakov Stern*\(^4\) and *Zhigang Li*\(^1\). \(^1\)Dartmouth College, \(^2\)Texas A&M University, \(^3\)University of Southern Maine, \(^4\)University of California, Santa Cruz

Sessions 9A-9H: Wed, June 22, 13:00-14:40 (EDT)

Sessions 9A: Bayesian Calibration Of Computer Models

13:00-13:25 On estimating photometric redshift of galaxies by augmenting observation with simulation

Arindam Fadikar. Argonne National Laboratory

13:25-13:50 A theoretical framework of the scaled Gaussian stochastic process in prediction and calibration

Mengyang Gu\(^1\), *Fangzheng Xie*\(^2\) and *Long Wang*\(^3\). \(^1\)University of California, Santa Barbara, \(^2\)Indiana University, Bloomington, \(^3\)Johns Hopkins University

13:50-14:15 Bayesian Calibration and Model Mixing

Matthew Pratola. Dept. of Statistics, The Ohio State University

14:15-14:40 An efficient approach for computer model calibration with variational Bayesian inference

Vojtech Kejzlar\(^1\) and *Taps Maiti*\(^2\). \(^1\)Skidmore College, \(^2\)Michigan State University
Session 9B : Novel Developments For Functional Data Analysis
Location: HPNP G112
Organizer: Raymond Wong, Texas A&M University.
Chair: Muxuan Liang, University of Florida.
13:00-13:25 Adaptive Frequency Band Analysis for Functional Time Series
• Pramita Bagchi and Scott Bruce. 1George Mason University 2Texas A&M University
13:25-13:50 Sliced Elastic Distance for Climate Model Validation
Robert Garrett, Trevor Harris and Bo Li. 1University of Illinois at Urbana-Champaign 2Texas A&M University
13:50-14:15 MARGARITA: Marginal-Product Basis Representation for Multi-dimensional Functional Data Analysis
William Consagra, Arun Venkataraman and Xing Qiu. University of Rochester
14:15-14:40 Floor Discussion.

Session 9C : Statistical Methods For High Dimensional Microbiome Data
Location: HPNP G101
Organizer: Somnath Datta, University of Florida, Subha Guha, University of Florida.
Chair: Subha Guha, University of Florida.
13:00-13:25 What Can We Learn About the Bias of Microbiome Studies from Analyzing Data from Mock Communities
Mo Li1. Glen Satten2, Ni Zhao3, Angel Rivera3 and Robert Fxy3. 1Johns Hopkins University 2Emory University 3CDC
13:25-13:50 Nonparametric Bayesian approaches for identifying differentially abundant genera between multiple groups in microbiome data
Archie Sachdeva, Somnath Datta and Subharup Guha. University of Florida
13:50-14:15 Deep ensemble learning over the microbial phylogenetic tree (DeepEn-Phy)
Woden Ling1, Youran Qi2, Xing Hua1 and Michael Wu1. 1Fred Hutchinson Cancer Center 2Amazon
14:15-14:40 IFAA: Robust association identification and Inference For Absolute Abundance in microbiome analyses
Zhigang Li. University of Florida

Session 9D : Recent Advancements In Statistical Data Integration
Location: HPNP G103
Organizer: Jin Jin, Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health.
Chair: Jin Jin, Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health.
13:00-13:25 Meta Clustering for Collaborative Learning
Chenglong Ye1, Reza Ghanadian2 and Jie Ding3. 1University of Kentucky 2Google 3University of Minnesota
13:25-13:50 Joint integrative analysis of dependent data sources
Emily Hector1 and Peter Song2. 1North Carolina State University 2University of Michigan
13:50-14:15 Data Integration Via Analysis of Subspaces
Jack Prothero1, MeiLei Jiang2, Quoc Tran-Dinh3, Jan Hannig3 and J.S. Marron3. 1National Institute of Standards and Technology 2Meta 3UNC Chapel Hill
14:15-14:40 Synthetic-data-based transfer learning approach for multisite risk prediction
Tian Gu and Rui Duan. Department of Biostatistics, Harvard T.H. Chan School of Public Health

Session 9E : Modern Business Statistical Analysis
Location: HPNP G114
Organizer: Aidong Adam Ding, Northeastern University, Shaobo Li, The University of Kansas.
Chair: Shaobo Li, The University of Kansas.
13:00-13:25 Penalized quantile regression
Ben Sherwood and Shaobo Li. University of Kansas
13:25-13:50 On the use of Minimum Penalties in Multivariate Regression
Brad Price1 and Ben Sherwood2. 1West Virginia University 2University of Kansas
Trambak Banerjee. University of Kansas
14:15-14:40 Measuring goodness-of-fit for bankruptcy prediction and its application to U.S. and Polish data
Xiaorui Zhu and Dangang Liu. University of Cincinnati

Session 9F : Application And Theory Of Statistical Test And Evaluation
Location: HPNP G301
Organizer: Aidong Adam Ding, Northeastern University.
Chair: Aidong Adam Ding, Northeastern University.
13:00-13:25 Statistical Evaluation of Deep Learning-based Side-channel Analysis
Aidong Ding. Northeastern University
13:25-13:50 Improved Meta-Analysis of ROC curves
Buddika Peiris1 and Shuang Yang2. 1Worcester Polytechnic Institute 2Worcester Polytechnic Institute
13:50-14:15 Signal-noise ratio of genetic associations and statistical power of SNP-set tests
Hong Zhang1, Ming Liu2, Jiashun Jin3 and Zheyang Wu2. 1Merck Research Laboratories 2WPI 3Carnegie Mellon University
14:15-14:40 BEAUTY Powered BEAST
Kai Zhang1, ZhiGen Zhao2 and Wen Zhou3. 1UNC 2Temple 3Colorado State University

Session 9G : Statistical Challenges In Clinical Trials For Alzheimer Disease
Location: HPNP 1101
Organizer: Guoqiao Wang, Washington University in St. Louis, Changxing Ma, University at Buffalo.
Chair: Yan Li, Washington University in St. Louis.
13:00-13:25 Dose change and statistical power in the Aducanumab trial
Guogen Shan. University of Florida

Yan Li, Guoqiao Wang, Chengjie Xiong, Krista L Moulder and John C Morris. Washington University in St. Louis

13:50-14:15 Floor Discussion.

Session 9H: Statistics Education In The Era Of AI And Data Science
Location: HPNP 1102
Organizer: Steven Foti, University of Florida.
Chair: Steven Foti, University of Florida.

13:00-13:25 Interactive Graphics: A Bridge from Coding to Programming
Adam Loy. Carleton College

13:25-13:50 Case studies to community engagement: bringing hands-on data science experiences to the classroom

Carrie Wright1, Stephanie Hicks1, Ava Hoffman1, Michael Rosenblum1, Michael Breshock1, Qier Meng1, Margaret Taub, Leah Jager1, Tyler Derreth1 and Mindi Levin1. 1Johns Hopkins Bloomberg School of Public Health

13:50-14:15 Constructing a Modern Data Visualization Course: Topics, Reflections, and Feedback
Steven Foti. University of Florida

14:15-14:40 Foundations for NLP-assisted formative assessment feedback for short-answer tasks in large-enrollment classes
Susan Lloyd, Matthew Beckman, Dennis Pearl, Rebecca Passoneau, Zhaohui Li and Zekun Wang. Penn State University
<table>
<thead>
<tr>
<th>No.</th>
<th>Last Name</th>
<th>First Name</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Anyaso-Samuel</td>
<td>Samuel</td>
<td>Adjusting for informative cluster size in pseudo-value based regression approaches with clustered time to event data</td>
</tr>
<tr>
<td>2</td>
<td>Chakraborty</td>
<td>Nilanjana</td>
<td>A Bayesian framework for sparse estimation in High Dimensional Mixed Frequency Vector Autoregressive Models</td>
</tr>
<tr>
<td>3</td>
<td>Chan</td>
<td>Lap Sum</td>
<td>DrFARM: Identification and inference for pleiotropic variants in GWAS</td>
</tr>
<tr>
<td>4</td>
<td>Daw</td>
<td>Ranadeep</td>
<td>REDS: Random Ensemble Deep Spatial prediction</td>
</tr>
<tr>
<td>5</td>
<td>Dilma</td>
<td>Eleni</td>
<td>Class Distance model for community detection</td>
</tr>
<tr>
<td>6</td>
<td>Fang</td>
<td>Yusi</td>
<td>On p-value combination of independent and frequent signals: asymptotic efficiency and Fisher ensemble</td>
</tr>
<tr>
<td>7</td>
<td>Ge</td>
<td>Lin</td>
<td>Tailoring Capture-Recapture Methods to Estimate Registry-Based Case Counts Based on Error-Prone Diagnostic Signals</td>
</tr>
<tr>
<td>8</td>
<td>Hampton</td>
<td>Hayden</td>
<td>Deep Belief Network Anomaly Detection using Least Square Support Vector Methods</td>
</tr>
<tr>
<td>9</td>
<td>Han</td>
<td>Qiyu</td>
<td>Statistical Inference for Low Rank Matrix Regression with Adaptively Collected Data</td>
</tr>
<tr>
<td>10</td>
<td>Kang</td>
<td>Huining</td>
<td>A mixture model approach for identifying genes whose isoform abundances are associated with survival outcome</td>
</tr>
<tr>
<td>11</td>
<td>Kang</td>
<td>Tong</td>
<td>Analyzing Dental Fluorosis Data using a Novel Bayesian Model for Clustered Longitudinal Outcomes with an Inflated Category</td>
</tr>
<tr>
<td>12</td>
<td>Adhikary</td>
<td>Avizit</td>
<td>PARD: Patient-specific Abnormal Region Detection in Alzheimer's Disease Studies</td>
</tr>
<tr>
<td>13</td>
<td>Li</td>
<td>Wenhao</td>
<td>A Comparison of Two Approaches to Dynamic Prediction: Joint Modeling and Landmark Modeling</td>
</tr>
<tr>
<td>14</td>
<td>Lindberg</td>
<td>David</td>
<td>A Bayesian Nonparametric Approach to an HIV Assessment Survey with Missing Data and Skip Conditions</td>
</tr>
<tr>
<td>15</td>
<td>Liu</td>
<td>Jinyuan</td>
<td>A Distance-based Semiparametric Regression Framework for Between-subject attributes: Applications to High-dimensional Sequences of Microbiome and Wearables</td>
</tr>
<tr>
<td>16</td>
<td>Lu</td>
<td>Nicholas</td>
<td>Analyzing the Impact of Different Countries’ Approaches to the COVID-19 Pandemic on Their Cumulative Infection Curves By Using Nonparametric Density Regression and Clustering Methods</td>
</tr>
<tr>
<td>17</td>
<td>Mao</td>
<td>Siqi</td>
<td>BERT based Financial Sentiment Index Enhanced (BERTFSIE) Models for Financial Markets Forecast</td>
</tr>
<tr>
<td>18</td>
<td>Yang</td>
<td>Yuting</td>
<td>Regression Analysis of a Future State Entry Time Distribution Conditional on a Past State Occupation in a Progressive Multistate Model</td>
</tr>
<tr>
<td>19</td>
<td>Roy</td>
<td>Samrat</td>
<td>A Regularized High Dimension Low Tubal-Rank Tensor Regression</td>
</tr>
<tr>
<td>20</td>
<td>Saha</td>
<td>Sudipto</td>
<td>A Constrained Bayesian Multiscale Spatial Model using the Truncated Normal Distribution</td>
</tr>
<tr>
<td>21</td>
<td>Samanta</td>
<td>Srijata</td>
<td>A generalized likelihood based Bayesian approach for scalable joint regression and covariance selection in high dimensions</td>
</tr>
<tr>
<td>22</td>
<td>Tan</td>
<td>Xiaqing</td>
<td>Leveraging Models from Heterogeneous Data Sources to Improve Personalized Treatment Effect Estimation</td>
</tr>
<tr>
<td></td>
<td>Name</td>
<td>Title</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>----------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Wang Wei</td>
<td>Multivariate Survival Analysis in Big Data: A Divide-and-Combine Approach</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Wang Xing</td>
<td>Extreme and Inference for Tail Gini Functionals with Applications in Tail Analysis of Systemic Risk</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Wang Hongwei</td>
<td>Clinical Trials with External Control: Beyond Propensity Score Matching</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>Xie Xiulin</td>
<td>Control Charts For Dynamic Process Monitoring With An Application To Air Pollution Surveillance</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>Yu Mengxin</td>
<td>Are Latent Factor Regression and Sparse Regression Adequate?</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>Yue Xiaowei</td>
<td>Physics-Constrained Bayesian Optimization</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>Zhang Lu</td>
<td>StarTrek: Combinatorial Variable Selection with False Discovery Rate Control</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>Zhong Weibin</td>
<td>Application of Two-step GONOGO Criteria and Model-based Design for Dose Finding Based on Efficacy</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>Zhou Doudou</td>
<td>RISE: Rank in Similarity Graph Edge-Count Two-Sample Test</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>Zou Jian</td>
<td>CGMM: an algorithm for constrained model-based clustering</td>
<td></td>
</tr>
<tr>
<td>Index of Authors</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Albert, P, 24</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alemdjrodo, K, 24</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alsharman, M, 19</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anderson, K, 27</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aron, J, 24</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Avilamos, L, 26</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bacher, R, 16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bacher, RL, 16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baek, J, 16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bagchi, P, 28</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bai, R, 21</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baker, J, 17</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bakitas, M, 19</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bal, AB, 18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bandypadhyay, D, 27</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Banerjee, S, 26</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Banerjee, T, 28</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Banker, M, 16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bazan, J, 23</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beckman, M, 29</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Belitskaya-Levy, I, 15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Berger, J, 20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Berry, S, 20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bhaduri, M, 20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bhattacharya, I, 18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bhattacharya, S, 14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bing, X, 14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blei, D, 14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bonvini, M, 21</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bornkamp, B, 17</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bradley, P, 23</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brezinski, M, 29</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bretz, P, 27</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bruce, S, 28</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brunel, N, 23</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Buhlmann, P, 19</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bunea, F, 14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cai, C, 20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cai, G, 25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cai, H, 19</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cai, W, 20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cai, X, 17</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Candès, E, 19</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cao, J, 13</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cao, S, 25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cao, X, 21</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cao, Y, 16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carone, M, 25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carroll, R, 22</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Castellucci, L, 20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Castro, LM, 26</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cevid, D, 19</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chandrasena, S, 18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chang, C, 17</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chang, V, 20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chatterjee, N, 22</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chen, A, 25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chen, C, 16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chen, D, 19</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chen, H, 16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chen, I, 27</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chen, J, 15, 16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chen, K, 19</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chen, Q, 22</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chen, S, 15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chen, T, 15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chen, W, 24</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chen, X, 16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chen, Y, 20, 20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chen, Z, 16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cheng, S, 25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cheng, Y, 18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cheung, Li, 24</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chiu, SH, 20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Choo-Wosoba, H, 24</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chung, D, 21</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chung’, M, 18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coffman, D, 14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colditz, G, 18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Consagra, W, 28</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cook, D, 21</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cook, RD, 21</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coull, B, 17</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cui, X, 23</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cui, Y, 23</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cukras, S, 25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dai, B, 22</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dalmacy, D, 19</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dang, X, 24</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Daniels, M, 19</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Das, S, 17</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dasilva, M, 24</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Datta, G, 27</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Datta, S, 16, 28</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Daver, N, 20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Degrottula, V, 15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Delrocco, N, 15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Delvin, B, 18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deng, K, 25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deng, S, 21, 21</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Derreth, T, 29</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dewhirst, F, 17</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diao, G, 24</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Digravio, C, 15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ding, A, 15, 28</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ding, J, 20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ding, S, 21</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dong, G, 20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Doshi-Velez, F, 21</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Duan, L, 21</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Duan, R, 20, 28</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dunson, D, 17</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ertefaie, A, 18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fadikar, A, 27</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fan, J, 20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fang, Y, 18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Farkouh, M, 20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ferrall-Fairbanks, M, 23</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ferrarelli, F, 26</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fletcher, PT, 18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Follmann, D, 25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forzani, L, 21</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Foti, S, 29</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fu, H, 22</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fuquenepatino, JA, 21</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G’sell, M, 18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Galarza, C, 25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gao, Y, 26</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Garay, A, 23</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Garrett, R, 28</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ghanadan, R, 28</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ghosh, M, 22</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ghosh, T, 27</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Giessing, A, 19</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gilbert, P, 22, 25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Goligher, E, 20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gribble, M, 24</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gu, M, 27</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gu, T, 28</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gu, Y, 17, 25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Guha, S, 27, 28</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Guhaniyogi, R, 27</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gui, J, 27</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Guinness, J, 17</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Guo, J, 15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Guo, S, 15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Guo, X, 18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Guo, Y, 19</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Guo, Z, 19, 27</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Habiger, J, 26</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Han, P, 20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hannig, J, 28</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hao, N, 22, 25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Harhay, MO, 21</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Harris, T, 28</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Harrison, C, 26</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hartigan, P, 19</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hassan, T, 16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He, Q, 26, 26</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He, W, 23</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He, X, 19</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>He, Y, 19</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hector, E, 28</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hicks, S, 16, 20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Higgs, R, 23</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ho, Y, 26</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hoen, A, 27</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hoffman, A, 29</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hou, W, 16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hu, J, 23</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hua, X, 28</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Huang, C, 20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Huang, H, 26, 26</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Huang, J, 20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Huang, Y, 25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Huey, N, 17</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Huo, X, 15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Huo, Z, 16, 16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Imperato, J, 16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jaeger, B, 21</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jager, L, 29</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jankar, J, 28</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Janson, L, 25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jantre, S, 14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jawahri, A, 19</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jensen, E, 16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ji, H, 16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>Page</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Szpiro, A.</td>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tan, M.</td>
<td>23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tang, W.</td>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tang, X.</td>
<td>26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tao, R.</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Taub, M.</td>
<td>29</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tian, H.</td>
<td>17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tian, X.</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ting, N.</td>
<td>19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Toh, S.</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tran-Dinh, Q.</td>
<td>28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trella, AL.</td>
<td>21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Troendle, J.</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tsao, P.</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tseng, G.</td>
<td>18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tsung, F.</td>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tu, W.</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tuft, M.</td>
<td>29</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tyx, R.</td>
<td>28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Valeri, L.</td>
<td>17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vemuri, B.</td>
<td>19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Venkataraman, A.</td>
<td>28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Viles, W.</td>
<td>27</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Volgushev, S.</td>
<td>18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Waller, L.</td>
<td>27</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wang, C.</td>
<td>26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wang, G.</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wang, H.</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wang, J.</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wang, L.</td>
<td>17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wang, M.</td>
<td>17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wang, P.</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wang, R.</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wang, S.</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wang, T.</td>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wang, X.</td>
<td>17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wang, Y.</td>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wang, Z.</td>
<td>29</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wei, L.</td>
<td>26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wherry, EJ.</td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Williamson, B.</td>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wright, C.</td>
<td>29</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wu, C.</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wu, CO.</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wu, E.</td>
<td>22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wu, F.</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wu, H.</td>
<td>18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wu, M.</td>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wu, Q.</td>
<td>19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wu, R.</td>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wu, S.</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wu, Z.</td>
<td>27</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Xi, D.</td>
<td>21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Xie, D.</td>
<td>23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Xie, F.</td>
<td>27</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Xie, X.</td>
<td>22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Xiong, C.</td>
<td>29</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Xiong, M.</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Xiong, Y.</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Xu, G.</td>
<td>19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Xu, M.</td>
<td>21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Xu, Q.</td>
<td>17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Xu, T.</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Xu, Z.</td>
<td>27</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Xue, H.</td>
<td>22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Young, JG.</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>You, L.</td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>You, M.</td>
<td>21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yuan, A.</td>
<td>24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yuan, B.</td>
<td>17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zeng, D.</td>
<td>22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zhan, T.</td>
<td>27</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zhang, L.</td>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zhang, P.</td>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zhang, Q.</td>
<td>17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zhang, R.</td>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zhang, S.</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zhang, T.</td>
<td>24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zhang, W.</td>
<td>26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zhang, X.</td>
<td>18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zhang, Y.</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zhao, A.</td>
<td>17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zhao, H.</td>
<td>24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zhao, J.</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zhao, L.</td>
<td>17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zhao, N.</td>
<td>28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zhao, Y.</td>
<td>24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zhao, Z.</td>
<td>18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zheng, Q.</td>
<td>17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zhong, J.</td>
<td>22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zhong, K.</td>
<td>23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zhong, W.</td>
<td>24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zhou, B.</td>
<td>24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zhou, H.</td>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zhou, J.</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zhou, Q.</td>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zhou, S.</td>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zhou, W.</td>
<td>28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zhou, Y.</td>
<td>17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zhou, Z.</td>
<td>18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zhu, J.</td>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zhu, L.</td>
<td>19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zhu, R.</td>
<td>23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zou, K.</td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zou, S.</td>
<td>25</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>